Xiaoqing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944947/publications.pdf

Version: 2024-02-01

133	8,606	52 h-index	87
papers	citations		g-index
134	134 docs citations	134	5844
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€lon Batteries. Advanced Materials, 2019, 31, e1903675.	21.0	780
2	Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules, 2017, 50, 1892-1901.	4.8	343
3	Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chemistry, 2013, 15, 245-254.	9.0	261
4	Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chemistry, 2009, 11, 1018.	9.0	221
5	Zeolitic Imidazolate Frameworks as Zn ²⁺ Modulation Layers to Enable Dendriteâ€Free Zn Anodes. Advanced Science, 2020, 7, 2002173.	11.2	199
6	Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Progress in Polymer Science, 2021, 113, 101353.	24.7	189
7	Research progress on bioâ€based thermosetting resins. Polymer International, 2016, 65, 164-173.	3.1	173
8	Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy and Environmental Science, 2020, 13, 2515-2523.	30.8	166
9	High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 7589-7599.	6.7	154
10	Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Advances, 2015, 5, 15930-15939.	3.6	148
11	Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydrate Polymers, 2012, 88, 26-30.	10.2	147
12	Synthesis and Properties of a Bioâ€Based Epoxy Resin with High Epoxy Value and Low Viscosity. ChemSusChem, 2014, 7, 555-562.	6.8	147
13	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	9.0	144
14	Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chemistry, 2013, 15, 1300.	9.0	139
15	Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Science China Chemistry, 2014, 57, 379-388.	8.2	139
16	Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer, 2016, 103, 1-8.	3.8	138
17	Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresource Technology, 2010, 101, 2520-2524.	9.6	130
18	The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. Journal of Applied Polymer Science, 2012, 125, 1108-1115.	2.6	130

#	Article	IF	CITATIONS
19	Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 2015, 78, 49-54.	3.9	124
20	Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Composites Part B: Engineering, 2020, 190, 107926.	12.0	119
21	How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. Journal of Materials Chemistry A, 2013, 1, 5081.	10.3	112
22	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	13.8	108
23	Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chemistry, 2008, 10, 1190.	9.0	107
24	Biobased Poly(ethylene 2,5-furancoate): No Longer an Alternative, but an Irreplaceable Polyester in the Polymer Industry. ACS Sustainable Chemistry and Engineering, 2020, 8, 8471-8485.	6.7	106
25	Synthesis of high performance polybenzoxazine networks from bio-based furfurylamine: Furan vs benzene ring. Polymer, 2017, 122, 258-269.	3.8	104
26	Biobased Nitrogen- and Oxygen-Codoped Carbon Materials for High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 2763-2773.	6.7	95
27	Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chemical Engineering Journal, 2022, 428, 131226.	12.7	95
28	Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 1228-1236.	6.7	94
29	Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Advances, 2014, 4, 23036.	3.6	92
30	Synthesis of rosinâ€based flexible anhydrideâ€type curing agents and properties of the cured epoxy. Polymer International, 2009, 58, 1435-1441.	3.1	91
31	A COFâ€Like Nâ€Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for Highâ€Energy Aqueous Zinc Dualâ€Ion Batteries. Advanced Materials, 2021, 33, e2101857.	21.0	90
32	Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS Nano, 2021, 15, 19490-19502.	14.6	90
33	Highly recoverable rosin-based shape memory polyurethanes. Journal of Materials Chemistry A, 2013, 1, 3263.	10.3	87
34	Making Benzoxazine Greener and Stronger: Renewable Resource, Microwave Irradiation, Green Solvent, and Excellent Thermal Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 8715-8723.	6.7	86
35	Biobased Benzoxazine Derived from Daidzein and Furfurylamine: Microwaveâ€Assisted Synthesis and Thermal Properties Investigation. ChemSusChem, 2018, 11, 3175-3183.	6.8	84
36	High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 2015, 87, 197-203.	3.9	82

#	Article	IF	CITATIONS
37	Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zincâ€lon Batteries: Recent Progress and Future Perspectives. Advanced Sustainable Systems, 2020, 4, 2000082.	5.3	81
38	Synthesis of a bio-based polyamidoamine-epichlorohydrin resin and its application for soy-based adhesives. International Journal of Adhesion and Adhesives, 2013, 44, 237-242.	2.9	76
39	New insight into the mechanism for the excellent gas properties of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /O 642-650.	verlock 10 5.4	76 Tf 50 667
40	How Does the Hydrogen Bonding Interaction Influence the Properties of Polybenzoxazine? An Experimental Study Combined with Computer Simulation. Macromolecules, 2018, 51, 4782-4799.	4.8	75
41	Synthesis of bioâ€based poly(ethylene 2,5â€furandicarboxylate) copolyesters: Higher glass transition temperature, better transparency, and good barrier properties. Journal of Polymer Science Part A, 2017, 55, 3298-3307.	2.3	69
42	A high-energy-density aqueous zinc–manganese battery with a La–Ca co-doped Îμ-MnO ₂ cathode. Journal of Materials Chemistry A, 2020, 8, 11642-11648.	10.3	69
43	Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate. Progress in Organic Coatings, 2016, 97, 210-215.	3.9	67
44	Copolyesters Based on 2,5-Furandicarboxylic Acid (FDCA): Effect of 2,2,4,4-Tetramethyl-1,3-Cyclobutanediol Units on Their Properties. Polymers, 2017, 9, 305.	4.5	66
45	Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon, 2020, 163, 85-94.	10.3	66
46	Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Composites Part B: Engineering, 2019, 179, 107523.	12.0	64
47	Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units. Polymer, 2018, 137, 173-185.	3.8	63
48	Synthesis of an intrinsically flame retardant bio-based benzoxazine resin. Polymer, 2016, 97, 418-427.	3.8	62
49	2,5-Furandicarboxylic Acid- and Itaconic Acid-Derived Fully Biobased Unsaturated Polyesters and Their Cross-Linked Networks. Industrial & Engineering Chemistry Research, 2017, 56, 2650-2657.	3.7	58
50	Hexahydro- <i>>s</i> -triazine: A Trial for Acid-Degradable Epoxy Resins with High Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 4683-4689.	6.7	57
51	Zincophilic Cu Sites Induce Dendriteâ€Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	14.9	57
52	Synthesis of Biobased Benzoxazines Suitable for Vacuum-Assisted Resin Transfer Molding Process via Introduction of Soft Silicon Segment. Industrial & Engineering Chemistry Research, 2018, 57, 3091-3102.	3.7	56
53	Highâ€Voltage Rechargeable Aqueous Zincâ€Based Batteries: Latest Progress and Future Perspectives. Small Science, 2021, 1, 2000066.	9.9	56
54	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55

#	Article	IF	CITATIONS
55	Pyrrolic-Dominated Nitrogen Redox Enhances Reaction Kinetics of Pitch-Derived Carbon Materials in Aqueous Zinc Ion Hybrid Supercapacitors., 2021, 3, 1291-1299.		54
56	Biobased Amorphous Polyesters with High $\langle i \rangle T \langle i \rangle \langle sub \rangle g \langle sub \rangle$: Trade-Off between Rigid and Flexible Cyclic Diols. ACS Sustainable Chemistry and Engineering, 2019, 7, 6401-6411.	6.7	53
57	Recent development on bioâ€based thermosetting resins. Journal of Polymer Science, 2021, 59, 1474-1490.	3.8	50
58	UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer, 2017, 108, 215-222.	3.8	48
59	Fully bioâ€based polyesters derived from 2,5â€furandicarboxylic acid (2,5â€FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. Journal of Applied Polymer Science, 2018, 135, 46076.	2.6	47
60	Neuroprotective Effects of Bone Marrow Stem Cells Overexpressing Glial Cell Line-Derived Neurotrophic Factor on Rats With Intracerebral Hemorrhage and Neurons Exposed to Hypoxia/Reoxygenation. Neurosurgery, 2011, 68, 691-704.	1.1	46
61	Synthesis of an Epoxy Monomer from Bio-Based 2,5-Furandimethanol and Its Toughening via Diels–Alder Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 8508-8516.	3.7	46
62	Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers, 2022, 14, 625.	4. 5	45
63	Synthesis of eugenol-based multifunctional monomers via a thiol–ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Advances, 2016, 6, 17857-17866.	3.6	44
64	Synthesis of Eugenol-Based Silicon-Containing Benzoxazines and Their Applications as Bio-Based Organic Coatings. Coatings, 2018, 8, 88.	2.6	44
65	Making organic coatings greener: Renewable resource, solvent-free synthesis, UV curing and repairability. European Polymer Journal, 2020, 123, 109439.	5.4	44
66	Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer. Polymer, 2020, 210, 123004.	3.8	44
67	Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon, 2021, 183, 600-611.	10.3	44
68	Green Synthesis of a Bioâ€Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromolecular Chemistry and Physics, 2016, 217, 1439-1447.	2.2	43
69	Mechanically robust and flame-retardant polylactide composites based on molecularly-engineered polyphosphoramides. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106317.	7.6	41
70	Cobaltâ€Based Electrocatalysts as Air Cathodes in Rechargeable Zn–Air Batteries: Advances and Challenges. Small Structures, 2021, 2, 2100144.	12.0	40
71	Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. European Polymer Journal, 2018, 109, 379-390.	5.4	38
72	Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 900-913.	2.1	37

#	Article	IF	CITATIONS
73	Enhancing Znâ€lon Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La ³⁺ . ChemSusChem, 2020, 13, 1568-1574.	6.8	37
74	Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 321-329.	2.2	36
75	Origin of highly recoverable shape memory polyurethanes (SMPUs) with non-planar ring structures: a single molecule force spectroscopy investigation. Journal of Materials Chemistry A, 2014, 2, 20010-20016.	10.3	36
76	Soft segment free thermoplastic polyester elastomers with high performance. Journal of Materials Chemistry A, 2015, 3, 13637-13641.	10.3	36
77	How Does the Hydrogen Bonding Interaction Influence the Properties of Furan-Based Epoxy Resins. Industrial & Engineering Chemistry Research, 2017, 56, 10929-10938.	3.7	36
78	Effects of Various 1,3-Propanediols on the Properties of Poly(propylene furandicarboxylate). ACS Sustainable Chemistry and Engineering, 2019, 7, 3282-3291.	6.7	36
79	Synthesis of Mechanically Robust and Self-Healing UV-Curable Materials from Renewable Feedstock. ACS Sustainable Chemistry and Engineering, 2020, 8, 16842-16852.	6.7	36
80	Outlook on ecologically improved composites for aviation interior and secondary structures. CEAS Aeronautical Journal, 2018, 9, 533-543.	1.7	33
81	A New Sight into Bio-Based Polybenzoxazine: From Tunable Thermal and Mechanical Properties to Excellent Marine Antifouling Performance. ACS Omega, 2020, 5, 3763-3773.	3.5	32
82	Highâ€performance biobased epoxy derived from rosin. Polymer International, 2010, 59, 607-609.	3.1	31
83	Bio-based shape memory epoxy resin synthesized from rosin acid. Iranian Polymer Journal (English) Tj ETQq1 1 0.	.784314 rş	gBT√Overlock
84	A quinone electrode with reversible phase conversion for long-life rechargeable aqueous aluminum–metal batteries. Chemical Communications, 2021, 57, 6931-6934.	4.1	31
85	Synthesis, characterization and properties of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Polymer International, 2006, 55, 545-551.	3.1	30
86	Preparation and characterization of regenerated cellulose/poly (vinylidene fluoride) (PVDF) blend films. Carbohydrate Polymers, 2012, 89, 67-71.	10.2	30
87	Mesenchymal stem cells contribute to the chemoresistance of hepatocellular carcinoma cells in inflammatory environment by inducing autophagy. Cell and Bioscience, 2014, 4, 22.	4.8	29
88	Hyperbranched flame retardant to simultaneously improve the fire-safety, toughness and glass transition temperature of epoxy resin. European Polymer Journal, 2021, 157, 110638.	5.4	28
89	Study of dextrin-derived curing agent for waterborne epoxy adhesive. Carbohydrate Polymers, 2011, 83, 1180-1184.	10.2	27
90	2,5â€Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science, 2019, 136, 47186.	2.6	27

#	Article	IF	CITATIONS
91	Bismuth nanoparticles@carbon composite as a stable and high capacity anode for high-voltage bismuth-manganese batteries. Energy Storage Materials, 2021, 41, 623-630.	18.0	27
92	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	3.3	26
93	A sustainable strategy for remediation of oily sewage: Clean and safe. Separation and Purification Technology, 2020, 240, 116592.	7.9	26
94	Bioâ€Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water. Advanced Sustainable Systems, 2019, 3, 1800126.	5.3	24
95	A synergetic strategy of well dispersing hydrophilic Ti3C2Tx MXene into hydrophobic polybenzoxazine composites for improved comprehensive performances. Composites Science and Technology, 2022, 219, 109248.	7.8	24
96	Methods for Rational Design of Advanced Znâ€Based Batteries. Small Methods, 2022, 6, .	8.6	24
97	Copolyesters developed from bioâ€based 2,5â€furandicarboxylic acid: Synthesis, sequence distribution, mechanical, and barrier properties of poly(propyleneâ€ <i>co</i> â€1,4â€cyclohexanedimethylene) Tj ETQq1 1 0.	78 43 614 rg	;BT2 / Overlock
98	Bio-Based Epoxy Resins Derived From Eugenol With Low Dielectric Constant. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.8	22
99	Initiating Highly Effective Hydrolysis of Regenerated Cellulose by Controlling Transition of Crystal Form with Sulfolane under Microwave Radiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1507-1511.	6.7	21
100	Comparative Study on the Properties of Epoxy Derived from Aromatic and Heteroaromatic Compounds: The Role of Hydrogen Bonding. Industrial & Engineering Chemistry Research, 2020, 59, 1914-1924.	3.7	20
101	Poly(1,4-butylene -co-1,4-cyclohexanedimethylene 2,5-furandicarboxylate) copolyester: Potential bio-based engineering plastic. European Polymer Journal, 2021, 147, 110317.	5.4	20
102	Preparation of a New Type of Polyamidoamine and Its Application for Soy Flourâ€Based Adhesives. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 265-272.	1.9	19
103	Preparation and characterization of regenerated cellulose blend films containing high amount of poly(vinyl alcohol) (PVA) in ionic liquid. Macromolecular Research, 2012, 20, 703-708.	2.4	18
104	Synthesis and properties of the bio-based isomeric benzoxazine resins: Revealing the effect of the neglected short alkyl substituents. European Polymer Journal, 2021, 157, 110671.	5.4	14
105	Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. Journal of Applied Polymer Science, 2006, 102, 2493-2499.	2.6	13
106	Patterning of thermosetting resins via laser engraving towards efficient thermal management. Nano Energy, 2022, 100, 107477.	16.0	13
107	Crystallization behavior and morphology of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2694-2704.	2.1	12
108	Synthesis of multifunctional monomers from rosin for the properties enhancement of soybean-oil based thermosets. Science China Technological Sciences, 2017, 60, 1332-1338.	4.0	12

#	Article	IF	CITATIONS
109	Increased Susceptibility to Ischemic Brain Injury in Neuroplastin 65-Deficient Mice Likely via Glutamate Excitotoxicity. Frontiers in Cellular Neuroscience, 2017, 11, 110.	3.7	12
110	Synthesis, Characterization and Properties of Poly(butylene succinate) Reinforced by Trimellitic Imide Units. Macromolecular Chemistry and Physics, 2006, 207, 694-700.	2.2	11
111	High molecular weight poly(butylene terephthalateâ€coâ€butylene 2,5â€furan dicarboxylate) copolyesters: From synthesis to thermomechanical and barrier properties. Journal of Applied Polymer Science, 2020, 137, 49365.	2.6	11
112	Research Progress on Formaldehydeâ€Free Wood Adhesive Derived from Soy Flour. , 0, , .		10
113	Synthesis of epoxy curing agents containing different ring structures and properties investigation of the cured resins. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
114	Completely amorphous high thermal resistant copolyesters from bioâ€based 2, <scp>5â€furandicarboxylic</scp> acid. Journal of Applied Polymer Science, 2021, 138, 50627.	2.6	9
115	Reusable, magnetic laser-induced graphene for efficient removal of organic pollutants from water. Carbon Letters, 2022, 32, 1047-1064.	5.9	9
116	Synthesis of bioâ€based polyesters with crystallization properties comparable to poly(butylene) Tj ETQq0 0 0 rgl	BT <u>{O</u> verlo	ck J 0 Tf 50 4
117	A high-voltage aqueous antimony-manganese hybrid battery based on all stripping/plating mechanism. Energy Storage Materials, 2022, 49, 529-536.	18.0	9
118	The study of regenerated cellulose films toughened with thermoplastic polyurethane elastomers. Cellulose, 2012, 19, 121-126.	4.9	8
119	Non-growing season soil CO2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains, Northwest China. Journal of Arid Land, 2013, 5, 488-499.	2.3	8
120	Manipulating the Properties of Poly(1,4â€Cyclohexylenedimethylene Terephthalate) (PCT) Just by Tuning Steric Configuration of 1.4â€Cyclohexanedimethanol (CHDM). Macromolecular Chemistry and Physics, 2018, 219, 1800172.	2.2	7
121	Regulating the performance of polybenzoxazine via the regiochemistry of amide substituents. Polymer, 2019, 181, 121807.	3.8	7
122	Investigation on the Effects of Bridging Groups in Aromatic Diphenol-Based Benzoxazines: Curing Reaction and H Bonds. Industrial & Engineering Chemistry Research, 2020, 59, 12085-12095.	3.7	7
123	Design of bio-based organic phase change materials containing a "safety valve― Green Chemistry, 2021, 23, 8643-8656.	9.0	6
124	The role of a biobased epoxy monomer in the preparation of diglycidyl ether of bisphenol A/MWCNT composites. Polymer Composites, 2017, 38, 1640-1645.	4.6	5
125	Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5053-5059.	10.3	5
126	Epoxy resin with excellent ultraviolet resistance and mechanical properties derived from renewable camphoric acid. Polymers for Advanced Technologies, 2021, 32, 3701-3713.	3.2	5

XIAOQING LIU

#	Article	IF	CITATION
127	A deep insight into polybenzoxazole formation in the heterocycle-containing polybenzoxazine: An enlightening thought for smarter precursor design. Polymer, 2021, 226, 123789.	3.8	5
128	Using Azo-Compounds to Endow Biobased Thermosetting Coatings with Potential Application for Reversible Information Storage. ACS Applied Polymer Materials, 2020, 2, 4551-4558.	4.4	4
129	Comparison of Three Instruments for Activity Disability in Acute Ischemic Stroke Survivors. Canadian Journal of Neurological Sciences, 2021, 48, 94-104.	0.5	4
130	Design of controllable degradable epoxy resin: High performance and feasible upcycling. Polymers for Advanced Technologies, 2022, 33, 1665-1676.	3.2	4
131	Enhancing Liâ€lon Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance. Small, 2021, 17, e2104178.	10.0	3
132	Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polymer Journal, 2022, 54, 995-1008.	2.7	3
133	Biopolymers and Biocomposites., 2020,, 231-275.		1