Rui E Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944890/publications.pdf Version: 2024-02-01

94433 123424 3,956 72 37 61 h-index citations g-index papers 75 75 75 5957 citing authors docs citations times ranked all docs

RILLE CASTRO

#	Article	IF	CITATIONS
1	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	3.7	11
2	Isolation of Mitochondria from Liver and Extraction of Total RNA and Protein: Analyses of miRNA and Protein Expression. Methods in Molecular Biology, 2021, 2310, 1-15.	0.9	2
3	Adiponectin, Leptin, and IGF-1 Are Useful Diagnostic and Stratification Biomarkers of NAFLD. Frontiers in Medicine, 2021, 8, 683250.	2.6	34
4	Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging, 2021, 13, 23416-23434.	3.1	17
5	RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut, 2021, 70, 2359-2372.	12.1	56
6	Evaluation of Tissue and Circulating miR-21 as Potential Biomarker of Response to Chemoradiotherapy in Rectal Cancer. Pharmaceuticals, 2020, 13, 246.	3.8	2
7	Host miRNA-21 promotes liver dysfunction by targeting small intestinal <i>Lactobacillus</i> in mice. Gut Microbes, 2020, 12, 1840766.	9.8	29
8	Potential of miR-21 to Predict Incomplete Response to Chemoradiotherapy in Rectal Adenocarcinoma. Frontiers in Oncology, 2020, 10, 577653.	2.8	11
9	Diet-dependent gut microbiota impacts on adult neurogenesis through mitochondrial stress modulation. Brain Communications, 2020, 2, fcaa165.	3.3	27
10	Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning?. Journal of Clinical Medicine, 2020, 9, 1541.	2.4	38
11	A Novel Serum Metabolomic Profile for the Differential Diagnosis of Distal Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Cancers, 2020, 12, 1433.	3.7	20
12	Extracellular Vesicles in Non-alcoholic Fatty Liver Disease: Key Players in Disease Pathogenesis and Promising Biomarker Tools. , 2020, , 157-180.		0
13	miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Molecular Metabolism, 2019, 29, 40-54.	6.5	35
14	Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis. Journal of Molecular Medicine, 2019, 97, 1113-1126.	3.9	21
15	Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy. Methods in Molecular Biology, 2019, 1981, 99-115.	0.9	1
16	Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver International, 2019, 39, 108-122.	3.9	89
17	Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine, 2019, 14, 835-850.	3.3	39
18	Processes exacerbating apoptosis in non-alcoholic steatohepatitis. Clinical Science, 2019, 133, 2245-2264.	4.3	13

RUI E CASTRO

#	Article	IF	CITATIONS
19	Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients. Liver International, 2018, 38, 523-531.	3.9	28
20	miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death and Differentiation, 2018, 25, 857-872.	11.2	92
21	Towards a definite mouse model of NAFLD. Journal of Hepatology, 2018, 69, 272-274.	3.7	23
22	Modulation of liver steatosis by miR-21/PPARα. Cell Death Discovery, 2018, 4, 9.	4.7	15
23	The Emerging Role of microRNAs in Aquaporin Regulation. Frontiers in Chemistry, 2018, 6, 238.	3.6	31
24	miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death and Disease, 2017, 8, e2748-e2748.	6.3	78
25	Cell Death and microRNAs in Cholestatic Liver Diseases: Update on Potential Therapeutic Applications. Current Drug Targets, 2017, 18, 921-931.	2.1	16
26	Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma. Journal of Clinical Medicine, 2016, 5, 30.	2.4	77
27	Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells. Nanomedicine, 2016, 11, 1817-1830.	3.3	47
28	Activation of necroptosis in human and experimental cholestasis. Cell Death and Disease, 2016, 7, e2390-e2390.	6.3	107
29	With mouse age comes wisdom: A review and suggestions of relevant mouse models for age-related conditions. Mechanisms of Ageing and Development, 2016, 160, 54-68.	4.6	14
30	miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget, 2016, 7, 9368-9387.	1.8	42
31	MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget, 2016, 7, 34322-34340.	1.8	52
32	Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clinical Science, 2015, 129, 721-739.	4.3	175
33	Inhibition of NF-κB by deoxycholic acid induces miR-21/PDCD4-dependent hepatocellular apoptosis. Scientific Reports, 2015, 5, 17528.	3.3	24
34	Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death and Disease, 2015, 6, e1718-e1718.	6.3	44
35	Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. Journal of Lipid Research, 2015, 56, 2158-2171.	4.2	36
36	c-Jun N-Terminal Kinase 1/c-Jun Activation of the p53/MicroRNA 34a/Sirtuin 1 Pathway Contributes to Apoptosis Induced by Deoxycholic Acid in Rat Liver. Molecular and Cellular Biology, 2014, 34, 1100-1120.	2.3	61

RUI E CASTRO

#	Article	IF	CITATIONS
37	Revisiting the metabolic syndrome and paving the way for micro <scp>RNA</scp> s in nonâ€elcoholic fatty liver disease. FEBS Journal, 2014, 281, 2503-2524.	4.7	55
38	Synthesis, Gâ€Quadruplex Stabilisation, Docking Studies, and Effect on Cancer Cells of Indolo[3,2â€ <i>b</i>]quinolines with One, Two, or Three Basic Side Chains. ChemMedChem, 2013, 8, 1648-1661.	3.2	39
39	miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. Journal of Hepatology, 2013, 58, 119-125.	3.7	300
40	Synthesis and Evaluation of Waterâ€Soluble Prodrugs of Ursodeoxycholic Acid (UDCA), an Antiâ€apoptotic Bile Acid. ChemMedChem, 2013, 8, 1002-1011.	3.2	25
41	Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2152-2163.	2.6	36
42	Targeting miR-506 in primary biliary cirrhosis to support the HCO3â^' umbrella. Clinics and Research in Hepatology and Gastroenterology, 2012, 36, 402-404.	1.5	2
43	Liver and Muscle in Morbid Obesity: The Interplay of Fatty Liver and Insulin Resistance. PLoS ONE, 2012, 7, e31738.	2.5	38
44	miR-143 Overexpression Impairs Growth of Human Colon Carcinoma Xenografts in Mice with Induction of Apoptosis and Inhibition of Proliferation. PLoS ONE, 2011, 6, e23787.	2.5	95
45	Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia, 2011, 54, 1788-1798.	6.3	87
46	Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. American Journal of Physiology - Renal Physiology, 2010, 299, G887-G897.	3.4	86
47	Cell Death Targets and Potential Modulators in Alzheimers Disease. Current Pharmaceutical Design, 2010, 16, 2851-2864.	1.9	36
48	Ursodeoxycholic acid modulates the ubiquitin-proteasome degradation pathway of p53. Biochemical and Biophysical Research Communications, 2010, 400, 649-654.	2.1	10
49	Naphtho[2,3-d]isoxazole-4,9-dione-3-carboxylates: Potent, non-cytotoxic, antiapoptotic agents. Chemico-Biological Interactions, 2009, 180, 175-182.	4.0	10
50	Tauroursodeoxycholic acid prevents E22Q Alzheimer's Aβ toxicity in human cerebral endothelial cells. Cellular and Molecular Life Sciences, 2009, 66, 1094-1104.	5.4	57
51	MicroRNAâ€143 reduces viability and increases sensitivity to 5â€fluorouracil in HCT116 human colorectal cancer cells. FEBS Journal, 2009, 276, 6689-6700.	4.7	175
52	p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends in Molecular Medicine, 2009, 15, 531-541.	6.7	38
53	Apoptosis in Transgenic Mice Expressing the P301L Mutated Form of Human Tau. Molecular Medicine, 2008, 14, 309-317.	4.4	32
54	Administration of Tauroursodeoxycholic Acid (TUDCA) Reduces Apoptosis Following Myocardial Infarction in Rat. The American Journal of Chinese Medicine, 2007, 35, 279-295.	3.8	62

RUI E CASTRO

#	Article	IF	CITATIONS
55	p53 Is a Key Molecular Target of Ursodeoxycholic Acid in Regulating Apoptosis. Journal of Biological Chemistry, 2007, 282, 34250-34259.	3.4	69
56	Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes. American Journal of Physiology - Renal Physiology, 2007, 293, G327-G334.	3.4	29
57	Progesterone and Caspase-3 Activation in Equine Cyclic Corpora Lutea. Reproduction in Domestic Animals, 2007, 42, 380-386.	1.4	13
58	Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. European Journal of Gastroenterology and Hepatology, 2006, 18, 21-29.	1.6	77
59	Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant neuroblastoma cells. Journal of Neurochemistry, 2006, 98, 1610-1618.	3.9	62
60	Functional Modulation of Nuclear Steroid Receptors by Tauroursodeoxycholic Acid Reduces Amyloid β-Peptide-Induced Apoptosis. Molecular Endocrinology, 2006, 20, 2292-2303.	3.7	46
61	Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-Î ² 1-induced apoptosis in rat hepatocytes. Hepatology, 2005, 42, 925-934.	7.3	60
62	A distinct microarray gene expression profile in primary rat hepatocytes incubated with ursodeoxycholic acid. Journal of Hepatology, 2005, 42, 897-906.	3.7	35
63	The Bile Acid Tauroursodeoxycholic Acid Modulates Phosphorylation and Translocation of Bad via Phosphatidylinositol 3-Kinase in Glutamate-Induced Apoptosis of Rat Cortical Neurons. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 845-852.	2.5	71
64	Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 Cells. Journal of Neurochemistry, 2004, 90, 567-575.	3.9	69
65	Modulation of Nuclear Steroid Receptors by Ursodeoxycholic Acid Inhibits TGF-β1-Induced E2F-1/p53-Mediated Apoptosis of Rat Hepatocytes. Biochemistry, 2004, 43, 8429-8438.	2.5	46
66	Hepatocyte Apoptosis, Expression of Death Receptors, and Activation of NF-κB in the Liver of Nonalcoholic and Alcoholic Steatohepatitis Patients. American Journal of Gastroenterology, 2004, 99, 1708-1717.	0.4	345
67	5. THE ROLE OF BILE ACIDS IN THE MODULATION OF APOPTOSIS. Principles of Medical Biology, 2004, 15, 119-145.	0.1	3
68	Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6087-6092.	7.1	178
69	Ursodeoxycholic Acid Modulates E2F-1 and p53 Expression through a Caspase-independent Mechanism in Transforming Growth Factor β1-induced Apoptosis of Rat Hepatocytes. Journal of Biological Chemistry, 2003, 278, 48831-48838.	3.4	64
70	Tauroursodeoxycholic Acid Prevents Amyloid-β Peptide-Induced Neuronal Death Via a Phosphatidylinositol 3-Kinase-Dependent Signaling Pathway. Molecular Medicine, 2003, 9, 226-234.	4.4	104
71	Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis. Journal of Lipid Research, 2002, 43, 885-894.	4.2	73