Xu-Cheng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944553/publications.pdf Version: 2024-02-01

XILCHENC HE

#	Article	IF	CITATIONS
1	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 2022, 56, 770-778.	4.6	16
2	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
3	Role of Iodine Recycling on Seaâ€Salt Aerosols in the Global Marine Boundary Layer. Geophysical Research Letters, 2022, 49, .	1.5	3
4	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	1.9	6
5	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26
6	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
7	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
8	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
9	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
10	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. Science of the Total Environment, 2021, 753, 142207.	3.9	21
11	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
12	Impacts of coagulation on the appearance time method for new particle growth rate evaluation and their corrections. Atmospheric Chemistry and Physics, 2021, 21, 2287-2304.	1.9	9
13	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
14	Investigation of several proxies to estimate sulfuric acid concentration under volcanic plume conditions. Atmospheric Chemistry and Physics, 2021, 21, 4541-4560.	1.9	3
15	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
16	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	1.2	13
17	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
18	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	1.9	12

Xu-Cheng He

#	Article	IF	CITATIONS
19	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
20	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	4.6	66
21	Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene. Atmospheric Chemistry and Physics, 2020, 20, 5145-5155.	1.9	20
22	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
23	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
24	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
25	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	4.6	32
26	Objective detection of the Kunming quasi-stationary front. Theoretical and Applied Climatology, 2019, 138, 1405-1418.	1.3	2
27	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
28	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
29	Computational and Experimental Investigation of the Detection of HO ₂ Radical and the Products of Its Reaction with Cyclohexene Ozonolysis Derived RO ₂ Radicals by an Iodide-Based Chemical Ionization Mass Spectrometer. Journal of Physical Chemistry A, 2017, 121, 6778-6789.	1.1	31
30	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	1.9	66