
Marianne G Rots

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies?. International Journal of Molecular Sciences, 2022, 23, 2197.	4.1	7
2	Ubiquitin carboxyl-terminal hydrolase isozyme L1/UCHL1 suppresses epithelial–mesenchymal transition and is under-expressed in cadmium-transformed human bronchial epithelial cells. Cell Biology and Toxicology, 2021, 37, 497-513.	5.3	6
3	The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. Journal of Personalized Medicine, 2021, 11, 103.	2.5	16
4	RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis. EMBO Journal, 2021, 40, e107680.	7.8	12
5	Exploiting epigenetics for the treatment of inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2020, 43, 63-70.	3.6	18
6	KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and Is Resilient to TGFÎ ² 1 Activation. International Journal of Molecular Sciences, 2020, 21, 3634.	4.1	6
7	Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Frontiers in Immunology, 2020, 11, 1071.	4.8	32
8	Advances of epigenetic editing. Current Opinion in Chemical Biology, 2020, 57, 75-81.	6.1	54
9	Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1922-1927.	2.2	25
10	The timeline of epigenetic drug discovery: from reality to dreams. Clinical Epigenetics, 2019, 11, 174.	4.1	275
11	The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Current Opinion in Biotechnology, 2019, 55, 68-73.	6.6	96
12	Editing the Epigenome: Overview, Open Questions, and Directions of Future Development. Methods in Molecular Biology, 2018, 1767, 3-18.	0.9	19
13	The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170077.	4.0	20
14	Epiproteome profiling of cadmiumâ€ŧransformed human bronchial epithelial cells by quantitative histone postâ€ŧranslational modification–enzymeâ€ŀinked immunosorbent assay. Journal of Applied Toxicology, 2018, 38, 888-895.	2.8	22
15	Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing. Methods in Molecular Biology, 2018, 1767, 395-415.	0.9	3
16	The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. , 2018, 182, 1-14.		36
17	Importance of Metal-Ion Exchange for the Biological Activity of Coordination Complexes of the Biomimetic Ligand N4Py. Inorganic Chemistry, 2018, 57, 7748-7756.	4.0	23
18	Missing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study. European Journal of Human Genetics, 2017, 25, 877-885.	2.8	67

MARIANNE G ROTS

#	Article	IF	CITATIONS
19	Virus–host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS Journal, 2017, 284, 3550-3572.	4.7	24
20	Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L334-L347.	2.9	35
21	Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Scientific Reports, 2017, 7, 177.	3.3	72
22	Re-expressing Epigenetically Silenced Genes by Inducing DNA Demethylation Through Targeting of Ten-Eleven Translocation 2 to Any Given Genomic Locus. Methods in Molecular Biology, 2017, 1654, 321-335.	0.9	2
23	Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain, 2017, 140, 3252-3268.	7.6	121
24	Regulation of mitochondrial gene expression the epigenetic enigma. Frontiers in Bioscience - Landmark, 2017, 22, 1099-1113.	3.0	69
25	TCTN2: a novel tumor marker with oncogenic properties. Oncotarget, 2017, 8, 95256-95269.	1.8	9
26	Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will. Current Genetic Medicine Reports, 2016, 4, 170-179.	1.9	52
27	Epigenetic drugs: from chemistry via biology to medicine and back. Clinical Epigenetics, 2016, 8, 56.	4.1	39
28	Rewriting DNA Methylation Signatures at Will: The Curable Genome Within Reach?. Advances in Experimental Medicine and Biology, 2016, 945, 475-490.	1.6	8
29	Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nature Communications, 2016, 7, 12284.	12.8	195
30	Re-expression of Selected Epigenetically Silenced Candidate Tumor Suppressor Genes in Cervical Cancer by TET2-directed Demethylation. Molecular Therapy, 2016, 24, 536-547.	8.2	33
31	Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics, 2015, 10, 671-676.	2.7	72
32	Mitochondrial epigenetics: an overlooked layer of regulation?. Trends in Genetics, 2015, 31, 353-356.	6.7	85
33	Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Molecular Oncology, 2015, 9, 1259-1273.	4.6	17
34	Prolonged re-expression of the hypermethylated gene <i>EPB41L3</i> using artificial transcription factors and epigenetic drugs. Epigenetics, 2015, 10, 384-396.	2.7	28
35	Procollagen Lysyl Hydroxylase 2 Expression Is Regulated by an Alternative Downstream Transforming Growth Factor β-1 Activation Mechanism. Journal of Biological Chemistry, 2015, 290, 28465-28476.	3.4	48
36	Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Research, 2014, 42, 1563-1574.	14.5	132

MARIANNE G ROTS

#	Article	IF	CITATIONS
37	Upregulation of endogenous ICAMâ€1 reduces ovarian cancer cell growth in the absence of immune cells. International Journal of Cancer, 2014, 134, 280-290.	5.1	31
38	Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Research, 2014, 16, 412.	5.0	38
39	Nrf2, the master redox switch: The Achilles' heel of ovarian cancer?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 494-509.	7.4	36
40	Efficient Nuclear DNA Cleavage in Human Cancer Cells by Synthetic Bleomycin Mimics. ACS Chemical Biology, 2014, 9, 1044-1051.	3.4	23
41	Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome. Neuroscience and Biobehavioral Reviews, 2014, 45, 72-84.	6.1	47
42	Functional validation of putative tumor suppressor gene <i>C13ORF18</i> in cervical cancer by Artificial Transcription Factors. Molecular Oncology, 2013, 7, 669-679.	4.6	39
43	Targeted Methylation and Gene Silencing of VEGF-A in Human Cells by Using a Designed Dnmt3a–Dnmt3L Single-Chain Fusion Protein with Increased DNA Methylation Activity. Journal of Molecular Biology, 2013, 425, 479-491.	4.2	138
44	Towards Sustained Silencing of HER2/neu in Cancer By Epigenetic Editing. Molecular Cancer Research, 2013, 11, 1029-1039.	3.4	72
45	A Role for MeCP2 in Switching Gene Activity via Chromatin Unfolding and HP1Î ³ Displacement. PLoS ONE, 2013, 8, e69347.	2.5	13
46	Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Research, 2012, 40, 10596-10613.	14.5	150
47	Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Research, 2012, 40, 6725-6740.	14.5	138
48	Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics, 2012, 7, 350-360.	2.7	189
49	EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 2010, 31, 1913-1921.	2.8	270
50	Targeted DNA Methylation by a DNA Methyltransferase Coupled to a Triple Helix Forming Oligonucleotide To Down-Regulate the Epithelial Cell Adhesion Molecule. Bioconjugate Chemistry, 2010, 21, 1239-1245.	3.6	25
51	Persistent downregulation of the pancarcinomaâ€associated epithelial cell adhesion molecule <i>via</i> active intranuclear methylation. International Journal of Cancer, 2008, 123, 484-489.	5.1	19
52	Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment. Molecular Carcinogenesis, 2007, 46, 391-401.	2.7	27
53	Step into the Groove: Engineered Transcription Factors as Modulators of Gene Expression. Advances in Genetics, 2006, 56, 131-161.	1.8	12
54	Engineering Zinc Finger Protein Transcription Factors: The Therapeutic Relevance of Switching Endogenous Gene Expression On or Off at Command. Journal of Molecular Biology, 2005, 354, 507-519.	4.2	55

#	Article	IF	CITATIONS
55	Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Research, 2003, 31, 6064-6078.	14.5	84