
Takafumi Tsuboi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5944009/publications.pdf Version: 2024-02-01

TAKAFUMI TSUBOL

#	Article	IF	CITATIONS
1	Plasmodium vivax transmission-blocking vaccines: Progress, challenges and innovation. Parasitology International, 2022, 87, 102525.	1.3	10
2	Elucidating functional epitopes within the N-terminal region of malaria transmission blocking vaccine antigen Pfs230. Npj Vaccines, 2022, 7, 4.	6.0	12
3	Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1. Infection and Immunity, 2022, 90, IAI0043521.	2.2	3
4	Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Medicine, 2022, 20, 89.	5.5	7
5	Comparison of total immunoglobulin G antibody responses to different protein fragments of Plasmodium vivax Reticulocyte binding protein 2b. Malaria Journal, 2022, 21, 71.	2.3	2
6	Anti-Gametocyte Antigen Humoral Immunity and Gametocytemia During Treatment of Uncomplicated Falciparum Malaria: A Multi-National Study. Frontiers in Cellular and Infection Microbiology, 2022, 12, 804470.	3.9	1
7	Editorial on the special issue on Plasmodium vivax: Current situation and challenges towards elimination. Parasitology International, 2022, 89, 102594.	1.3	1
8	Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P.Âknowlesi. Cell Reports Medicine, 2022, 3, 100662.	6.5	6
9	Characterization of a Plasmodium falciparum PHISTc protein, PF3D7_0801000, in blood- stage malaria parasites. Parasitology International, 2021, 80, 102240.	1.3	2
10	A conserved malaria parasite antigen Pb22 plays a critical role in male gametogenesis in Plasmodium berghei. Cellular Microbiology, 2021, 23, e13294.	2.1	8
11	Leveraging the wheat germ cell-free protein synthesis system to accelerate malaria vaccine development. Parasitology International, 2021, 80, 102224.	1.3	18
12	Plasmodium yoelii Erythrocyte Binding Like Protein Interacts With Basigin, an Erythrocyte Surface Protein. Frontiers in Cellular and Infection Microbiology, 2021, 11, 656620.	3.9	4
13	IgG Antibody Responses Are Preferential Compared With IgM for Use as Serological Markers for Detecting Recent Exposure to <i>Plasmodium vivax</i> Infection. Open Forum Infectious Diseases, 2021, 8, ofab228.	0.9	8
14	Application of 23 Novel Serological Markers for Identifying Recent Exposure to Plasmodium vivax Parasites in an Endemic Population of Western Thailand. Frontiers in Microbiology, 2021, 12, 643501.	3.5	9
15	Plasmodium falciparum SURFIN4.1 forms an intermediate complex with PTEX components and Pf113 during export to the red blood cell. Parasitology International, 2021, 83, 102358.	1.3	6
16	Identification of Novel Malaria Transmission-Blocking Vaccine Candidates. Frontiers in Cellular and Infection Microbiology, 2021, 11, 805482.	3.9	13
17	AGIA Tag System for Ultrastructural Protein Localization Analysis in Blood-Stage Plasmodium falciparum. Frontiers in Cellular and Infection Microbiology, 2021, 11, 777291.	3.9	1
18	Skeleton binding protein 1 (SBP1) of Plasmodium falciparum accumulates in electron-dense material before passing through the parasitophorous vacuole membrane. Parasitology International, 2020, 75, 102003.	1.3	7

#	Article	IF	CITATIONS
19	Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nature Medicine, 2020, 26, 741-749.	30.7	90
20	Characterization of mitochondrial carrier proteins of malaria parasite Plasmodium falciparum based on in vitro translation and reconstitution. Parasitology International, 2020, 79, 102160.	1.3	8
21	Global Repertoire of Human Antibodies Against Plasmodium falciparum RIFINs, SURFINs, and STEVORs in a Malaria Exposed Population. Frontiers in Immunology, 2020, 11, 893.	4.8	15
22	The C-terminal region of the Plasmodium yoelii microgamete surface antigen PyMiGS induces potent anti-malarial transmission-blocking immunity in mice. Vaccine, 2020, 38, 3129-3136.	3.8	2
23	Recovery and stable persistence of chloroquine sensitivity in Plasmodium falciparum parasites after its discontinued use in Northern Uganda. Malaria Journal, 2020, 19, 76.	2.3	23
24	Molecular cloning and characterization of plerocercoid-immunosuppressive factor from Spirometra erinaceieuropaei. Parasitology International, 2020, 76, 102062.	1.3	4
25	Observation of morphological changes of female osmiophilic bodies prior to Plasmodium gametocyte egress from erythrocytes. Molecular and Biochemical Parasitology, 2020, 236, 111261.	1.1	10
26	Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Scientific Reports, 2020, 10, 6573.	3.3	14
27	The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malaria Journal, 2020, 19, 155.	2.3	14
28	ldentification of a Novel RAMA/RON3 Rhoptry Protein Complex in Plasmodium falciparum Merozoites. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605367.	3.9	5
29	A comparison of non-magnetic and magnetic beads for measuring IgG antibodies against Plasmodium vivax antigens in a multiplexed bead-based assay using Luminex technology (Bio-Plex 200 or MAGPIX). PLoS ONE, 2020, 15, e0238010.	2.5	15
30	Serodiagnostic antigens of Clonorchis sinensis identified and evaluated by high-throughput proteogenomics. PLoS Neglected Tropical Diseases, 2020, 14, e0008998.	3.0	4
31	Deletion of Plasmodium falciparum Protein RON3 Affects the Functional Translocation of Exported Proteins and Glucose Uptake. MBio, 2019, 10, .	4.1	19
32	Rhoptry neck protein 11 has crucial roles during malaria parasite sporozoite invasion of salivary glands and hepatocytes. International Journal for Parasitology, 2019, 49, 725-735.	3.1	14
33	Malaria vaccine candidates displayed on novel virus-like particles are immunogenic and induce transmission-blocking activity. PLoS ONE, 2019, 14, e0221733.	2.5	21
34	Expression and Localization Profiles of Rhoptry Proteins in Plasmodium berghei Sporozoites. Frontiers in Cellular and Infection Microbiology, 2019, 9, 316.	3.9	14
35	Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Review of Vaccines, 2019, 18, 1017-1027.	4.4	8
36	Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Frontiers in Immunology, 2019, 10, 730.	4.8	18

#	Article	IF	CITATIONS
37	Identification of domains within Pfs230 that elicit transmission blocking antibody responses. Vaccine, 2019, 37, 1799-1806.	3.8	37
38	PfMSA180 is a novel Plasmodium falciparum vaccine antigen that interacts with human erythrocyte integrin associated protein (CD47). Scientific Reports, 2019, 9, 5923.	3.3	12
39	Targets of complement-fixing antibodies in protective immunity against malaria in children. Nature Communications, 2019, 10, 610.	12.8	76
40	The N-Terminal Region of Plasmodium falciparum MSP10 Is a Target of Protective Antibodies in Malaria and Is Important for PfGAMA/PfMSP10 Interaction. Frontiers in Immunology, 2019, 10, 2669.	4.8	13
41	Anti-MSP11 lgC inhibits Plasmodium falciparum merozoite invasion into erythrocytes in vitro. Parasitology International, 2019, 69, 25-29.	1.3	5
42	Antibodies against a Plasmodium falciparum RON12 inhibit merozoite invasion into erythrocytes. Parasitology International, 2019, 68, 87-91.	1.3	8
43	Plasmodium RON12 localizes to the rhoptry body in sporozoites. Parasitology International, 2019, 68, 17-23.	1.3	7
44	Rhoptry neck protein 2 expressed in Plasmodium sporozoites plays a crucial role during invasion of mosquito salivary glands. Cellular Microbiology, 2019, 21, e12964.	2.1	32
45	PV1, a novel Plasmodium falciparum merozoite dense granule protein, interacts with exported protein in infected erythrocytes. Scientific Reports, 2018, 8, 3696.	3.3	29
46	The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library. Biochemical and Biophysical Research Communications, 2018, 500, 261-267.	2.1	2
47	A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasitePlasmodium yoelii(PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation. Cellular Microbiology, 2018, 20, e12821.	2.1	25
48	Identification of target proteins of clinical immunity to Plasmodium falciparum in a region of low malaria transmission. Parasitology International, 2018, 67, 203-208.	1.3	12
49	Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Scientific Reports, 2018, 8, 5052.	3.3	25
50	The Plasmodium yoelii microgamete surface antigen (PyMiGS) induces anti-malarial transmission blocking immunity that reduces microgamete motility/release from activated male gametocytes. Vaccine, 2018, 36, 7463-7471.	3.8	9
51	Identification of a PH domain-containing protein which is localized to crystalloid bodies of Plasmodium ookinetes. Malaria Journal, 2018, 17, 466.	2.3	8
52	Comprehensive analysis of antibody responses to Plasmodium falciparum erythrocyte membrane protein 1 domains. Vaccine, 2018, 36, 6826-6833.	3.8	19
53	Plasmodium falciparum Exported Protein 1 is localized to dense granules in merozoites. Parasitology International, 2018, 67, 637-639.	1.3	19
54	Progress toward a transmission-blocking vaccine against malaria. Lancet Infectious Diseases, The, 2018. 18. 927-928.	9.1	6

#	Article	IF	CITATIONS
55	Artemisinin <i>-</i> Resistant <i>Plasmodium falciparum</i> with High Survival Rates, Uganda, 2014–2016. Emerging Infectious Diseases, 2018, 24, 718-726.	4.3	104
56	Characterization of Plasmodium berghei Pbg37 as Both a Pre- and Postfertilization Antigen with Transmission-Blocking Potential. Infection and Immunity, 2018, 86, .	2.2	14
57	Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Vaccine, 2017, 35, 873-881.	3.8	55
58	Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates. Expert Review of Vaccines, 2017, 16, 769-779.	4.4	20
59	Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate. Scientific Reports, 2017, 7, 46086.	3.3	50
60	Host immunity to <i>Plasmodium falciparum</i> and the assessment of emerging artemisinin resistance in a multinational cohort. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3515-3520.	7.1	78
61	Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature, 2017, 552, 101-105.	27.8	118
62	Absence of in vivo selection for K13 mutations after artemether–lumefantrine treatment in Uganda. Malaria Journal, 2017, 16, 23.	2.3	24
63	Identification of a novel merozoite surface antigen of Plasmodium vivax, PvMSA180. Malaria Journal, 2017, 16, 133.	2.3	13
64	Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 8 in patients with P. vivax infection. Malaria Journal, 2017, 16, 211.	2.3	22
65	Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate. Parasites and Vectors, 2017, 10, 8.	2.5	29
66	Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. PLoS Neglected Tropical Diseases, 2017, 11, e0005888.	3.0	52
67	Antibody Responses to Plasmodium falciparum and Plasmodium vivax and Prospective Risk of Plasmodium spp. Infection Postpartum. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1197-1204.	1.4	1
68	Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. ELife, 2017, 6, .	6.0	64
69	Naturally-Acquired Immune Response against Plasmodium vivax Rhoptry-Associated Membrane Antigen. PLoS ONE, 2016, 11, e0148723.	2.5	9
70	The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Scientific Reports, 2016, 6, 33094.	3.3	59
71	Serological markers to measure recent changes in malaria at population level in Cambodia. Malaria Journal, 2016, 15, 529.	2.3	48
72	Identification of three ookinete-specific genes and evaluation of their transmission-blocking potentials in Plasmodium berghei. Vaccine, 2016, 34, 2570-2578.	3.8	26

#	Article	IF	CITATIONS
73	Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. Journal of Biological Chemistry, 2016, 291, 7703-7715.	3.4	70
74	Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine, 2016, 34, 5612-5622.	3.8	25
75	Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole Membrane Disruption and Gamete Egress from Erythrocytes. Cell Host and Microbe, 2016, 20, 618-630.	11.0	59
76	Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period. Scientific Reports, 2016, 6, 32159.	3.3	6
77	Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status. Scientific Reports, 2016, 6, 35581.	3.3	28
78	Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting. Scientific Reports, 2016, 6, 20859.	3.3	13
79	Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Scientific Reports, 2016, 6, 26993.	3.3	39
80	Differences in PfEMP1s recognized by antibodies from patients with uncomplicated or severe malaria. Malaria Journal, 2016, 15, 258.	2.3	23
81	Vaccine candidates for malaria: what's new?. Expert Review of Vaccines, 2016, 15, 1-3.	4.4	20
82	Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China. Parasites and Vectors, 2015, 8, 615.	2.5	12
83	Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development. PLoS ONE, 2015, 10, e0136109.	2.5	36
84	Antigenicity and immunogenicity of PvRALP1, a novel Plasmodium vivax rhoptry neck protein. Malaria Journal, 2015, 14, 186.	2.3	8
85	The rodent malaria lactate dehydrogenase assay provides a high throughput solution for in vivo vaccine studies. Parasitology International, 2015, 64, 60-63.	1.3	1
86	Immunoprofiling of the Tryptophan-Rich Antigen Family in Plasmodium vivax. Infection and Immunity, 2015, 83, 3083-3095.	2.2	28
87	Development of Malaria Transmission-Blocking Vaccines: From Concept to Product. Advances in Parasitology, 2015, 89, 109-152.	3.2	82
88	Naturally-acquired cellular immune response against Plasmodium vivax merozoite surface protein-1 paralog antigen. Malaria Journal, 2015, 14, 159.	2.3	12
89	Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine, 2015, 33, 1901-1908.	3.8	51
90	Imaging of the subsurface structures of "unroofed―Plasmodium falciparum-infected erythrocytes. Experimental Parasitology, 2015, 153, 174-179.	1.2	8

Τακαγυμί Τςυβοι

#	Article	IF	CITATIONS
91	Antibody titre as a surrogate of protection of the first malaria subunit vaccine, RTS,S/AS01. Lancet Infectious Diseases, The, 2015, 15, 1371-1372.	9.1	10
92	Plasmodium falciparum: Genetic diversity and complexity of infections in an isolated village in western Thailand. Parasitology International, 2015, 64, 260-266.	1.3	10
93	Characterization of Plasmodium vivax Early Transcribed Membrane Protein 11.2 and Exported Protein 1. PLoS ONE, 2015, 10, e0127500.	2.5	9
94	Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Review of Vaccines, 2014, 13, 75-85.	4.4	36
95	Serological Surveillance Development for Tropical Infectious Diseases Using Simultaneous Microsphere-Based Multiplex Assays and Finite Mixture Models. PLoS Neglected Tropical Diseases, 2014, 8, e3040.	3.0	38
96	Tricomponent Complex Loaded with a Mosquito-Stage Antigen of the Malaria Parasite Induces Potent Transmission-Blocking Immunity. Vaccine Journal, 2014, 21, 561-569.	3.1	5
97	Loop-Mediated Isothermal Amplification Assay for Rapid Diagnosis of Malaria Infections in an Area of Endemicity in Thailand. Journal of Clinical Microbiology, 2014, 52, 1471-1477.	3.9	37
98	Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development. Microbes and Infection, 2014, 16, 419-428.	1.9	16
99	Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitology Research, 2014, 113, 2559-2568.	1.6	14
100	Characteristic Age Distribution of Plasmodium vivax Infections after Malaria Elimination on Aneityum Island, Vanuatu. Infection and Immunity, 2014, 82, 243-252.	2.2	33
101	Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). Journal of Proteomics, 2014, 102, 66-82.	2.4	55
102	A member of the CPW-WPC protein family is expressed in and localized to the surface of developing ookinetes. Malaria Journal, 2013, 12, 129.	2.3	17
103	Serological responses to a soluble recombinant chimeric Plasmodium vivax circumsporozoite protein in VK210 and VK247 population. Malaria Journal, 2013, 12, 323.	2.3	12
104	Identification and characterization of the Plasmodium falciparum RhopH2 ortholog in Plasmodium vivax. Parasitology Research, 2013, 112, 585-593.	1.6	9
105	The N-terminal segment of Plasmodium falciparum SURFIN4.1 is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum. Parasitology International, 2013, 62, 215-229.	1.3	18
106	Characterization of a novel merozoite surface protein of Plasmodium vivax, Pv41. Acta Tropica, 2013, 126, 222-228.	2.0	24
107	Natural Acquisition of Immunity to Plasmodium vivax. Advances in Parasitology, 2013, 81, 77-131.	3.2	84
108	A Small Molecule Glycosaminoglycan Mimetic Blocks Plasmodium Invasion of the Mosquito Midgut. PLoS Pathogens, 2013, 9, e1003757.	4.7	25

7

#	Article	IF	CITATIONS
109	The Plasmodium vivax Merozoite Surface Protein 1 Paralog Is a Novel Erythrocyte-Binding Ligand of P. vivax. Infection and Immunity, 2013, 81, 1585-1595.	2.2	42
110	Functional Comparison of Plasmodium falciparum Transmission-Blocking Vaccine Candidates by the Standard Membrane-Feeding Assay. Infection and Immunity, 2013, 81, 4377-4382.	2.2	117
111	RALP1 Is a Rhoptry Neck Erythrocyte-Binding Protein of Plasmodium falciparum Merozoites and a Potential Blood-Stage Vaccine Candidate Antigen. Infection and Immunity, 2013, 81, 4290-4298.	2.2	38
112	Identification and Prioritization of Merozoite Antigens as Targets of Protective Human Immunity to <i>Plasmodium falciparum</i> Malaria for Vaccine and Biomarker Development. Journal of Immunology, 2013, 191, 795-809.	0.8	213
113	Phenotypic Dissection of a Plasmodium-Refractory Strain of Malaria Vector Anopheles stephensi: The Reduced Susceptibility to P. berghei and P. yoelii. PLoS ONE, 2013, 8, e63753.	2.5	18
114	Biosynthesis, Localization, and Macromolecular Arrangement of the Plasmodium falciparum Translocon of Exported Proteins (PTEX). Journal of Biological Chemistry, 2012, 287, 7871-7884.	3.4	130
115	New Insights into Acquisition, Boosting, and Longevity of Immunity to Malaria in Pregnant Women. Journal of Infectious Diseases, 2012, 206, 1612-1621.	4.0	85
116	Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine, 2012, 30, 1807-1812.	3.8	46
117	Antibodies against a Plasmodium falciparum antigen PfMSPDBL1 inhibit merozoite invasion into human erythrocytes. Vaccine, 2012, 30, 1972-1980.	3.8	31
118	PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division. Cell Host and Microbe, 2012, 11, 7-18.	11.0	124
119	Pv12, a 6-Cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. Parasitology International, 2012, 61, 443-449.	1.3	35
120	Large-scale survey for novel genotypes of Plasmodium falciparum chloroquine-resistance gene pfcrt. Malaria Journal, 2012, 11, 92.	2.3	20
121	Autophagy-Related Atg8 Localizes to the Apicoplast of the Human Malaria Parasite Plasmodium falciparum. PLoS ONE, 2012, 7, e42977.	2.5	75
122	Molecular test for vivax malaria with loop-mediated isothermal amplification method in central China. Parasitology Research, 2012, 110, 2439-2444.	1.6	24
123	Targeting Sialic Acid Dependent and Independent Pathways of Invasion in Plasmodium falciparum. PLoS ONE, 2012, 7, e30251.	2.5	35
124	A Plant-Produced Pfs230 Vaccine Candidate Blocks Transmission of Plasmodium falciparum. Vaccine Journal, 2011, 18, 1351-1357.	3.1	84
125	Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is localized to the rhoptry body. Parasitology International, 2011, 60, 132-138.	1.3	33
126	Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate–tricarboxylate carrier of Plasmodium falciparum. Biochemical and Biophysical Research Communications, 2011, 414, 612-617.	2.1	28

#	Article	IF	CITATIONS
127	Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine, 2011, 29, 2720-2726.	3.8	22
128	Worldwide sequence conservation of transmission-blocking vaccine candidate Pvs230 in Plasmodium vivax. Vaccine, 2011, 29, 4308-4315.	3.8	35
129	Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine, 2011, 29, 9038-9050.	3.8	39
130	Measurement of naturally acquired humoral immune responses against the C-terminal region of the Plasmodium vivax MSP1 protein using protein arrays. Parasitology Research, 2011, 109, 1259-1266.	1.6	22
131	Plasmodium vivax: comparison of immunogenicity among proteins expressed in the cell-free systems of Escherichia coli and wheat germ by suspension array assays. Malaria Journal, 2011, 10, 192.	2.3	39
132	Genetic Polymorphism of Plasmodium vivax msp1p, a Paralog of Merozoite Surface Protein 1, from Worldwide Isolates. American Journal of Tropical Medicine and Hygiene, 2011, 84, 292-297.	1.4	10
133	Discovery of GAMA, a Plasmodium falciparum Merozoite Micronemal Protein, as a Novel Blood-Stage Vaccine Candidate Antigen. Infection and Immunity, 2011, 79, 4523-4532.	2.2	69
134	Tricomponent Immunopotentiating System as a Novel Molecular Design Strategy for Malaria Vaccine Development. Infection and Immunity, 2011, 79, 4260-4275.	2.2	17
135	Evaluation of Loop-Mediated Isothermal Amplification (LAMP) for Malaria Diagnosis in a Field Setting. American Journal of Tropical Medicine and Hygiene, 2011, 85, 594-596.	1.4	73
136	N-Terminal Prodomain of Pfs230 Synthesized Using a Cell-Free System Is Sufficient To Induce Complement-Dependent Malaria Transmission-Blocking Activity. Vaccine Journal, 2011, 18, 1343-1350.	3.1	82
137	Serologic Markers in Relation to Parasite Exposure History Help to Estimate Transmission Dynamics of Plasmodium vivax. PLoS ONE, 2011, 6, e28126.	2.5	26
138	<i>Plasmodium vivax</i> Ookinete Surface Protein Pvs25 Linked to Cholera Toxin B Subunit Induces Potent Transmission-Blocking Immunity by Intranasal as Well as Subcutaneous Immunization. Infection and Immunity, 2010, 78, 3773-3782.	2.2	42
139	Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for clinical detection of Plasmodium falciparum gametocytes. Parasitology International, 2010, 59, 414-420.	1.3	54
140	Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax transmission. Vaccine, 2010, 28, 6014-6020.	3.8	45
141	Detection of Plasmodium vivax infection in the Republic of Korea by loop-mediated isothermal amplification (LAMP). Acta Tropica, 2010, 113, 61-65.	2.0	35
142	The wheat germ cell-free protein synthesis system: A key tool for novel malaria vaccine candidate discovery. Acta Tropica, 2010, 114, 171-176.	2.0	55
143	Immunoproteomics Profiling of Blood Stage <i>Plasmodium vivax</i> Infection by High-Throughput Screening Assays. Journal of Proteome Research, 2010, 9, 6479-6489.	3.7	104
144	An Efficient Approach to the Production of Vaccines Against the Malaria Parasite. Methods in Molecular Biology, 2010, 607, 73-83.	0.9	41

#	Article	IF	CITATIONS
145	Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies. PLoS ONE, 2009, 4, e6559.	2.5	46
146	Identification of Plasmodium malariae, a Human Malaria Parasite, in Imported Chimpanzees. PLoS ONE, 2009, 4, e7412.	2.5	48
147	Malaria Ookinete Surface Protein-Based Vaccination via the Intranasal Route Completely Blocks Parasite Transmission in both Passive and Active Vaccination Regimens in a Rodent Model of Malaria Infection. Infection and Immunity, 2009, 77, 5496-5500.	2.2	13
148	Wheat germ cell-free technology for accelerating the malaria vaccine research. Expert Opinion on Drug Discovery, 2009, 4, 1191-1199.	5.0	8
149	Preerythrocytic, live-attenuated <i>Plasmodium falciparum</i> vaccine candidates by design. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13004-13009.	7.1	164
150	Evidence for the Transmission ofPlasmodium vivaxin the Republic of the Congo, West Central Africa. Journal of Infectious Diseases, 2009, 200, 1465-1469.	4.0	81
151	Single amino acid substitution in <i>Plasmodium yoelii</i> erythrocyte ligand determines its localization and controls parasite virulence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7167-7172.	7.1	76
152	Serodiagnostic applicability of recombinant antigens of Clonorchis sinensis expressed by wheat germ cell-free protein synthesis system. Diagnostic Microbiology and Infectious Disease, 2009, 64, 334-339.	1.8	23
153	Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitology International, 2009, 58, 29-35.	1.3	159
154	Pyruvate kinase type-II isozyme in Plasmodium falciparum localizes to the apicoplast. Parasitology International, 2009, 58, 101-105.	1.3	29
155	A small-scale systematic analysis of alternative splicing in Plasmodium falciparum. Parasitology International, 2009, 58, 196-199.	1.3	32
156	Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target. Parasitology International, 2009, 58, 243-248.	1.3	37
157	Mucosal vaccination approach against mosquito-borne Japanese encephalitis virus. Japanese Journal of Infectious Diseases, 2009, 62, 37-45.	1.2	10
158	Diversity and evolution of the rhoph1/clag multigene family of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2008, 158, 11-21.	1.1	42
159	Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. Molecular and Biochemical Parasitology, 2008, 159, 142-145.	1.1	21
160	Wheat Germ Cell-Free System-Based Production of Malaria Proteins for Discovery of Novel Vaccine Candidates. Infection and Immunity, 2008, 76, 1702-1708.	2.2	203
161	Control of Cell Wall Assembly by a Histone-Like Protein in Mycobacteria. Journal of Bacteriology, 2007, 189, 8241-8249.	2.2	48
162	Detection of Four Plasmodium Species by Genus- and Species-Specific Loop-Mediated Isothermal Amplification for Clinical Diagnosis. Journal of Clinical Microbiology, 2007, 45, 2521-2528.	3.9	248

#	Article	IF	CITATIONS
163	The Plasmodium falciparum RhopH2 promoter and first 24 amino acids are sufficient to target proteins to the rhoptries. Parasitology International, 2007, 56, 31-43.	1.3	23
164	Plasmodium berghei XAT: Protective 155/160kDa antigens are located in parasitophorous vacuoles of schizont-stage parasite. Experimental Parasitology, 2007, 116, 450-457.	1.2	2
165	Cell-free production of functional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Molecular and Biochemical Parasitology, 2007, 151, 216-219.	1.1	15
166	The Plasmodium vivax homolog of the ookinete adhesive micronemal protein, CTRP. Parasitology International, 2006, 55, 227-231.	1.3	39
167	2-Cys Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. Molecular and Biochemical Parasitology, 2006, 148, 44-51.	1.1	31
168	Plasmodium vivax serine repeat antigen (SERA) multigene family exhibits similar expression patterns in independent infections. Molecular and Biochemical Parasitology, 2006, 150, 353-358.	1.1	17
169	Reemerging vivax malaria: changing patterns of annual incidence and control programs in the Republic of Korea. Korean Journal of Parasitology, 2006, 44, 285.	1.3	54
170	Erythrocyte surface glycosylphosphatidyl inositol anchored receptor for the malaria parasite. Molecular and Biochemical Parasitology, 2005, 140, 13-21.	1.1	20
171	Apical expression of three RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH complex. Molecular and Biochemical Parasitology, 2005, 143, 20-28.	1.1	73
172	Nasal Immunization with a Malaria Transmission-Blocking Vaccine Candidate, Pfs25, Induces Complete Protective Immunity in Mice against Field Isolates of Plasmodium falciparum. Infection and Immunity, 2005, 73, 7375-7380.	2.2	63
173	The Wheat Germ Cell-Free Expression System. Methods in Molecular Biology, 2005, 310, 131-144.	0.9	39
174	Molecular Analysis of <i>Plasmodium ovale</i> Variants. Emerging Infectious Diseases, 2004, 10, 1235-1240.	4.3	60
175	Plasmodium Ookinete-secreted Proteins Secreted through a Common Micronemal Pathway Are Targets of Blocking Malaria Transmission. Journal of Biological Chemistry, 2004, 279, 26635-26644.	3.4	87
176	The Plasmodium falciparum clag9 gene encodes a rhoptry protein that is transferred to the host erythrocyte upon invasion. Molecular Microbiology, 2004, 52, 107-118.	2.5	78
177	Plasmodium vivax transmission: chances for control?. Trends in Parasitology, 2004, 20, 192-198.	3.3	122
178	A rapid genotyping method for the vivax malaria transmission-blocking vaccine candidates, Pvs25 and Pvs28. Parasitology International, 2004, 53, 211-216.	1.3	15
179	Potent immunogenicity of DNA vaccines encoding Plasmodium vivax transmission-blocking vaccine candidates Pvs25 and Pvs28—evaluation of homologous and heterologous antigen-delivery prime-boost strategy. Vaccine, 2004, 22, 3205-3213.	3.8	37
180	Expression profiles of peroxiredoxin proteins of the rodent malaria parasite Plasmodium yoelii. International Journal for Parasitology, 2003, 33, 1455-1461.	3.1	27

#	Article	IF	CITATIONS
181	Characterisation of the rhoph2 gene of Plasmodium falciparum and Plasmodium yoelii. Molecular and Biochemical Parasitology, 2003, 127, 47-57.	1.1	43
182	Gene structure and ookinete expression of the chitinase genes of Plasmodium vivax and Plasmodium yoelii. Molecular and Biochemical Parasitology, 2003, 130, 51-54.	1.1	19
183	Transmission-blocking vaccine of vivax malaria. Parasitology International, 2003, 52, 1-11.	1.3	60
184	Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine, 2003, 21, 3143-3148.	3.8	38
185	BLOCKING OF TRANSMISSION TO MOSQUITOES BY ANTIBODY TO PLASMODIUM VIVAX MALARIA VACCINE CANDIDATES PVS25 AND PVS28 DESPITE ANTIGENIC POLYMORPHISM IN FIELD ISOLATES. American Journal of Tropical Medicine and Hygiene, 2003, 69, 536-541.	1.4	51
186	Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. American Journal of Tropical Medicine and Hygiene, 2003, 69, 536-41.	1.4	21
187	Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Molecular and Biochemical Parasitology, 2002, 121, 275-278.	1.1	73
188	Two types of Plasmodium ovale defined by SSU rRNA have distinct sequences for ookinete surface proteins. Molecular and Biochemical Parasitology, 2002, 122, 223-226.	1.1	30
189	Conserved regions of the Plasmodium yoelii rhoptry protein RhopH3 revealed by comparison with the P. falciparum homologue. Molecular and Biochemical Parasitology, 2001, 112, 297-299.	1.1	17
190	Presence of three distinct ookinete surface protein genes, Pos25, Pos28-1, and Pos28-2, in Plasmodium ovale. Molecular and Biochemical Parasitology, 2001, 113, 341-344.	1.1	18
191	von Willebrand Factor A Domain-related Protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Molecular and Biochemical Parasitology, 2001, 116, 65-72.	1.1	96
192	The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Molecular and Biochemical Parasitology, 2001, 118, 223-231.	1.1	85
193	Development of a Method for the In Vitro Production of Plasmodium vivax Ookinetes. Journal of Parasitology, 2001, 87, 928-930.	0.7	20
194	Antibodies to Malaria Vaccine Candidates Pvs25 and Pvs28 Completely Block the Ability of Plasmodium vivax To Infect Mosquitoes. Infection and Immunity, 2000, 68, 6618-6623.	2.2	160
195	Micronemal Transport of Plasmodium Ookinete Chitinases to the Electron-Dense Area of the Apical Complex for Extracellular Secretion. Infection and Immunity, 2000, 68, 6461-6465.	2.2	38
196	Stage-Specific Expression of Heat Shock Protein 90 in Murine Malaria Parasite Plasmodium yoelii. Experimental Parasitology, 1999, 93, 61-65.	1.2	6
197	Gametocyte-dominant expression of a novel P-type ATPase in Plasmodium yoelii. Molecular and Biochemical Parasitology, 1999, 104, 331-336.	1.1	9
198	Nitric oxide inhibits the development of Plasmodium yoelii gametocytes into gametes. Parasitology International, 1998, 47, 157-166.	1.3	32

#	Article	IF	CITATIONS
199	Infected host serum blocks transmission of Plasmodium yoelii via a nitric oxide-dependent mechanism. Parasitology International, 1998, 47, 225-232.	1.3	1
200	Sequence Polymorphism in Two Novel Plasmodium vivax Ookinete Surface Proteins, Pvs25 and Pvs28, That Are Malaria Transmission-blocking Vaccine Candidates. Molecular Medicine, 1998, 4, 772-782.	4.4	108
201	Primary structure of a novel ookinete surface protein from Plasmodium berghei1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDBJ data bases under the accession number D88664.1. Molecular and Biochemical Parasitology, 1997, 85, 131-134.	1.1	24
202	Comparison of Plasmodium yoelii ookinete surface antigens with human and avian malaria parasite homologues reveals two highly conserved regions1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDBJ data bases under the accession numbers: Pys21, D89081 and Pys25, D89082.1. Molecular and Biochemical Parasitology, 1997, 87, 107-111.	1.1	18
203	Plasmodium vivax:Favored Gene Frequencies of the Merozoite Surface Protein-1 and the Multiplicity of Infection in a Malaria Endemic Region. Experimental Parasitology, 1996, 83, 11-18.	1.2	63
204	Comparison of Isozyme Patterns between Spirometra erinacei and Spirometra mansonoides by Isoelectric Focusing. Journal of Parasitology, 1992, 78, 735.	0.7	7
205	Effect of infection with Spirometra erinacei plerocercoid on thyroid hormone in mice. Parasitology Research, 1988, 74, 262-266.	1.6	1
206	Evidence of the growth factor in mouse serum infected withSpirometra erinacei plerocercoids. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1986, 72, 83-87.	0.8	2
207	Biological effects ofSpirometra erinacei plerocercoids in several species of rodents. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1983, 69, 489-499.	0.8	13
208	Meta-Analysis of Human Antibodies Against Plasmodium falciparum Variable Surface and Merozoite Stage Antigens. Frontiers in Immunology, 0, 13, .	4.8	1
209	Asexual Blood-Stage Malaria Vaccine Candidate PfRipr5: Enhanced Production in Insect Cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5