Klaus Podar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5943627/publications.pdf

Version: 2024-02-01

247 papers 16,902 citations

73 h-index 128 g-index

259 all docs

259 docs citations

times ranked

259

16122 citing authors

#	Article	IF	CITATIONS
1	Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood, 2001, 98, 210-216.	0.6	869
2	Multiple myeloma. Lancet, The, 2009, 374, 324-339.	6.3	685
3	A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 2005, 8, 407-419.	7.7	673
4	Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia, 2001, 15, 1950-1961.	3.3	536
5	Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood, 2003, 101, 1530-1534.	0.6	533
6	Oral Selinexor–Dexamethasone for Triple-Class Refractory Multiple Myeloma. New England Journal of Medicine, 2019, 381, 727-738.	13.9	460
7	Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood, 2008, 112, 1329-1337.	0.6	439
8	Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood, 2001, 98, 428-435.	0.6	399
9	Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood, 2006, 107, 4053-4062.	0.6	398
10	Bortezomib induces canonical nuclear factor-lºB activation in multiple myeloma cells. Blood, 2009, 114, 1046-1052.	0.6	329
11	Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 2002, 1, 479-492.	7.7	327
12	Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia, 2009, 23, 10-24.	3.3	317
13	The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood, 2005, 105, 1383-1395.	0.6	310
14	Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. British Journal of Haematology, 2005, 128, 192-203.	1.2	305
15	Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell, 2009, 16, 309-323.	7.7	242
16	Role of B-Cell–Activating Factor in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment. Cancer Research, 2006, 66, 6675-6682.	0.4	212
17	Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood, 2005, 105, 1717-1723.	0.6	208
18	A novel Bcl-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene, 2007, 26, 2374-2380.	2.6	207

#	Article	IF	CITATIONS
19	Raf-1-associated Protein Phosphatase 2A as a Positive Regulator of Kinase Activation. Journal of Biological Chemistry, 2000, 275, 22300-22304.	1.6	200
20	Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood, 2008, 111, 1654-1664.	0.6	193
21	The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19478-19483.	3.3	189
22	A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Research, 2003, 63, 5462-9.	0.4	189
23	Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Research, 2003, 63, 6174-7.	0.4	184
24	JNK-dependent Release of Mitochondrial Protein, Smac, during Apoptosis in Multiple Myeloma (MM) Cells. Journal of Biological Chemistry, 2003, 278, 17593-17596.	1.6	180
25	Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood, 2004, 104, 4188-4193.	0.6	177
26	Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia, 2003, 17, 41-44.	3.3	173
27	Identification of genes regulated by Dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene, 2002, 21, 1346-1358.	2.6	170
28	Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood, 2005, 106, 1794-1800.	0.6	167
29	Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Seminars in Oncology, 2001, 28, 607-612.	0.8	164
30	Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene, 2003, 22, 8386-8393.	2.6	163
31	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40–Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications. Cancer Research, 2005, 65, 11712-11720.	0.4	163
32	Vascular Endothelial Growth Factor-induced Migration of Multiple Myeloma Cells Is Associated with \hat{I}^21 Integrin- and Phosphatidylinositol 3-Kinase-dependent PKC \hat{I}^\pm Activation. Journal of Biological Chemistry, 2002, 277, 7875-7881.	1.6	161
33	Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Research, 2003, 63, 5850-8.	0.4	159
34	Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood, 2003, 102, 3379-3386.	0.6	147
35	VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood, 2004, 104, 2886-2892.	0.6	147
36	A Novel Carbohydrate-Based Therapeutic GCS-100 Overcomes Bortezomib Resistance and Enhances Dexamethasone-Induced Apoptosis in Multiple Myeloma Cells. Cancer Research, 2005, 65, 8350-8358.	0.4	147

3

#	Article	IF	Citations
37	Human Anti-CD40 Antagonist Antibody Triggers Significant Antitumor Activity against Human Multiple Myeloma. Cancer Research, 2005, 65, 5898-5906.	0.4	146
38	Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood, 2007, 109, 1220-1227.	0.6	144
39	MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood, 2007, 110, 3744-3752.	0.6	144
40	MLN120B, a Novel IκB Kinase β Inhibitor, Blocks Multiple Myeloma Cell Growth In vitro and In vivo. Clinical Cancer Research, 2006, 12, 5887-5894.	3.2	130
41	Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Seminars in Oncology, 2001, 28, 607-612.	0.8	130
42	Essential Role of Caveolae in Interleukin-6- and Insulin-like Growth Factor I-triggered Akt-1-mediated Survival of Multiple Myeloma Cells. Journal of Biological Chemistry, 2003, 278, 5794-5801.	1.6	128
43	The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Research, 2002, 62, 5019-26.	0.4	128
44	p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene, 2004, 23, 8766-8776.	2.6	127
45	Mechanisms by which SGN-40, a Humanized Anti-CD40 Antibody, Induces Cytotoxicity in Human Multiple Myeloma Cells: Clinical Implications. Cancer Research, 2004, 64, 2846-2852.	0.4	126
46	Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood, 2007, 109, 1669-1677.	0.6	126
47	Mcl-1 Regulation and Its Role in Multiple Myeloma. Cell Cycle, 2004, 3, 1259-1262.	1.3	125
48	The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti–multiple myeloma (MM) activity and overcome bortezomib resistance. Blood, 2004, 103, 3158-3166.	0.6	122
49	The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood, 2008, 111, 3751-3759.	0.6	122
50	Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic antiâ€myeloma activity ⟨i⟩in vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩. British Journal of Haematology, 2010, 149, 537-549.	1.2	119
51	A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene, 2008, 27, 721-731.	2.6	114
52	CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3–kinase/AKT/NF-κB signaling. Blood, 2003, 101, 2762-2769.	0.6	111
53	Transforming Growth Factor \hat{l}^2 Receptor I Kinase Inhibitor Down-Regulates Cytokine Secretion and Multiple Myeloma Cell Growth in the Bone Marrow Microenvironment. Clinical Cancer Research, 2004, 10, 7540-7546.	3.2	111
54	2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood, 2002, 100, 2187-2194.	0.6	110

#	Article	IF	CITATIONS
55	Dephosphorylation of Ser-259 Regulates Raf-1 Membrane Association. Journal of Biological Chemistry, 2002, 277, 7913-7919.	1.6	108
56	Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood, 2007, 110, 1656-1663.	0.6	106
57	Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. British Journal of Haematology, 2007, 138, 783-791.	1.2	102
58	The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Molecular Cancer Therapeutics, 2002, 1, 539-44.	1.9	101
59	Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenström macroglobulinemia. Blood, 2007, 109, 4964-4972.	0.6	100
60	FTY720 Induces Apoptosis in Multiple Myeloma Cells and Overcomes Drug Resistance. Cancer Research, 2005, 65, 7478-7484.	0.4	97
61	Activated Jak2 with the V617F Point Mutation Promotes G1/S Phase Transition. Journal of Biological Chemistry, 2006, 281, 18177-18183.	1.6	96
62	Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib*. British Journal of Haematology, 2006, 134, 145-156.	1.2	94
63	Combination Therapy with Interleukin-6 Receptor Superantagonist Sant7 and Dexamethasone Induces Antitumor Effects in a Novel SCID-hu In vivo Model of Human Multiple Myeloma. Clinical Cancer Research, 2005, 11, 4251-4258.	3.2	93
64	Effects of PKC412, Nilotinib, and Imatinib Against GIST-Associated PDGFRA Mutants With Differential Imatinib Sensitivity. Gastroenterology, 2006, 131, 1734-1742.	0.6	93
65	Targeting the Tumor Microenvironment: Focus on Angiogenesis. Journal of Oncology, 2012, 2012, 1-16.	0.6	93
66	Targeting Angiogenesis via a c-Myc/Hypoxia-Inducible Factor-1α–Dependent Pathway in Multiple Myeloma. Cancer Research, 2009, 69, 5082-5090.	0.4	89
67	GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood, 2004, 103, 3474-3479.	0.6	87
68	Caveolin-1 Is Required for Vascular Endothelial Growth Factor-Triggered Multiple Myeloma Cell Migration and Is Targeted by Bortezomib. Cancer Research, 2004, 64, 7500-7506.	0.4	86
69	CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood, 2002, 99, 1419-1427.	0.6	83
70	Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood, 2004, 104, 2458-2466.	0.6	79
71	Cytokines and signal transduction. Best Practice and Research in Clinical Haematology, 2005, 18, 509-524.	0.7	78
72	The malignant clone and the bone-marrow environment. Best Practice and Research in Clinical Haematology, 2007, 20, 597-612.	0.7	78

#	Article	IF	Citations
73	CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf–mediated interactions with bone marrow stromal cells. Blood, 2009, 113, 4309-4318.	0.6	75
74	A therapeutic role for targeting c-Myc/Hif-1- dependent signaling pathways. Cell Cycle, 2010, 9, 1722-1728.	1.3	72
75	Biologic sequelae of lκB kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood, 2009, 113, 5228-5236.	0.6	70
76	Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood, 2003, 101, 3606-3614.	0.6	67
77	Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma. Leukemia, 2009, 23, 961-970.	3 . 3	65
78	Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood, 2009, 113, 1513-1521.	0.6	65
79	The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. British Journal of Haematology, 2011, 155, 438-448.	1.2	65
80	GF-15, a Novel Inhibitor of Centrosomal Clustering, Suppresses Tumor Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Cancer Research, 2012, 72, 5374-5385.	0.4	64
81	Critical Role for Hematopoietic Cell Kinase (Hck)-mediated Phosphorylation of Gab1 and Gab2 Docking Proteins in Interleukin 6-induced Proliferation and Survival of Multiple Myeloma Cells. Journal of Biological Chemistry, 2004, 279, 21658-21665.	1.6	60
82	The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia, 2017, 31, 1570-1581.	3.3	60
83	Generation of Antitumor Invariant Natural Killer T Cell Lines in Multiple Myeloma and Promotion of Their Functions via Lenalidomide: A Strategy for Immunotherapy. Clinical Cancer Research, 2008, 14, 6955-6962.	3.2	58
84	Inhibition of VEGF Signaling Pathways in Multiple Myeloma and Other Malignancies. Cell Cycle, 2007, 6, 538-542.	1.3	57
85	Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2009, 8, 26-35.	1.9	57
86	Novel inosine monophosphate dehydrogenase inhibitor VX-944 induces apoptosis in multiple myeloma cells primarily via caspase-independent AIF/Endo G pathway. Oncogene, 2005, 24, 5888-5896.	2.6	56
87	Up-Regulation of c-Jun Inhibits Proliferation and Induces Apoptosis via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma. Cancer Research, 2007, 67, 1680-1688.	0.4	56
88	Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene, 2003, 22, 6296-6300.	2.6	54
89	Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene, 2004, 23, 3597-3602.	2.6	54
90	SDX-101, the R-enantiomer of etodolac, induces cytotoxicity, overcomes drug resistance, and enhances the activity of dexamethasone in multiple myeloma. Blood, 2005, 106, 706-712.	0.6	54

#	Article	IF	CITATIONS
91	Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Research, 2003, 63, 8428-36.	0.4	54
92	BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood, 2009, 114, 1813-1819.	0.6	51
93	BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. British Journal of Haematology, 2007, 136, 414-423.	1.2	49
94	The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opinion on Investigational Drugs, 2007, 16, 1693-1707.	1.9	48
95	Emerging therapies for multiple myeloma. Expert Opinion on Emerging Drugs, 2009, 14, 99-127.	1.0	48
96	Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells. Leukemia, 2015, 29, 1555-1563.	3.3	48
97	Selinexor for the treatment of multiple myeloma. Expert Opinion on Pharmacotherapy, 2020, 21, 399-408.	0.9	46
98	Ku86 Variant Expression and Function in Multiple Myeloma Cells Is Associated with Increased Sensitivity to DNA Damage. Journal of Immunology, 2000, 165, 6347-6355.	0.4	45
99	Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-β inhibitors. Oncogene, 2005, 24, 3121-3129.	2.6	43
100	Novel Oncogenic Mutations of CBL in Human Acute Myeloid Leukemia That Activate Growth and Survival Pathways Depend on Increased Metabolism. Journal of Biological Chemistry, 2010, 285, 32596-32605.	1.6	42
101	Translocation of Ku86/Ku70 to the multiple myeloma cell membrane. Experimental Hematology, 2002, 30, 212-220.	0.2	40
102	Identification of novel antigens with induced immune response in monoclonal gammopathy of undetermined significance. Blood, 2009, 114, 3276-3284.	0.6	38
103	Targeting signalling pathways for the treatment of multiple myeloma. Expert Opinion on Therapeutic Targets, 2005, 9, 359-381.	1.5	33
104	\hat{l}^2 -lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Experimental Hematology, 2002, 30, 711-720.	0.2	31
105	Proteasomal Degradation of Topoisomerase I Is Preceded by c-Jun NH2-Terminal Kinase Activation, Fas Up-Regulation, and Poly(ADP-Ribose) Polymerase Cleavage in SN38-Mediated Cytotoxicity against Multiple Myeloma. Cancer Research, 2004, 64, 8746-8753.	0.4	30
106	Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. Cancers, 2021, 13, 5154.	1.7	30
107	Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo. Blood, 2005, 105, 350-357.	0.6	29
108	Targeting Mcl-1 for multiple myeloma (MM) therapy: Drug-induced generation of Mcl-1 fragment Mcl-1128–350 triggers MM cell death via c-Jun upregulation. Cancer Letters, 2014, 343, 286-294.	3.2	29

#	Article	IF	Citations
109	Myeloma Bone Disease: Update on Pathogenesis and Novel Treatment Strategies. Pharmaceutics, 2018, 10, 202.	2.0	29
110	2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating Heat Shock Protein-27. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 149-155.	2.2	28
111	Novel etodolac analog SDX-308 (CEP-18082) induces cytotoxicity in multiple myeloma cells associated with inhibition of \hat{l}^2 -catenin/TCF pathway. Leukemia, 2007, 21, 535-540.	3.3	28
112	Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming. Oncotarget, 2017, 8, 67639-67650.	0.8	26
113	Caveolin-1 as a potential new therapeutic target in multiple myeloma. Cancer Letters, 2006, 233, 10-15.	3.2	25
114	Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Research, 2016, 18, 26.	2.2	25
115	The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers, 2021, 13, 2326.	1.7	24
116	Preclinical efficacy of sepantronium bromide (YM155) in multiple myeloma is conferred by down regulation of Mcl-1. Oncotarget, 2014, 5, 10237-10250.	0.8	22
117	Emerging Therapies Targeting Tumor Vasculature in Multiple Myeloma and other Hematologic and Solid Malignancies. Current Cancer Drug Targets, 2011, 11, 1005-1024.	0.8	21
118	Tissue Hypoxia and Alterations in Microvascular Architecture Predict Glioblastoma Recurrence in Humans. Clinical Cancer Research, 2021, 27, 1641-1649.	3.2	21
119	Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opinion on Emerging Drugs, 2019, 24, 133-152.	1.0	20
120	Adoptive cell therapy in multiple Myeloma. Expert Opinion on Biological Therapy, 2017, 17, 1511-1522.	1.4	19
121	JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia, 2021, 35, 3509-3525.	3.3	19
122	Update on immunomodulatory drugs (IMiDs) in hematologic and solid malignancies. Expert Opinion on Pharmacotherapy, 2012, 13, 473-494.	0.9	16
123	Prolyl Hydroxylase 3 Attenuates MCL-1–Mediated ATP Production to Suppress the Metastatic Potential of Colorectal Cancer Cells. Cancer Research, 2016, 76, 2219-2230.	0.4	16
124	Pathway-Directed Therapy in Multiple Myeloma. Cancers, 2021, 13, 1668.	1.7	15
125	Targeting the immune niche within the bone marrow microenvironment: The rise of immunotherapy in Multiple Myeloma. Current Cancer Drug Targets, 2017, 17, 1-1.	0.8	15
126	Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Research and Treatment, 2019, 173, 585-596.	1.1	14

#	Article	IF	CITATIONS
127	Targeting transcription factors in multiple myeloma: evolving therapeutic strategies. Expert Opinion on Investigational Drugs, 2019, 28, 445-462.	1.9	13
128	Pre-Osteoblasts Stimulate Migration of Breast Cancer Cells via the HGF/MET Pathway. PLoS ONE, 2016, 11, e0150507.	1.1	13
129	Inhibitors of the Transcription Factor STAT3 Decrease Growth and Induce Immune Response Genes in Models of Malignant Pleural Mesothelioma (MPM). Cancers, 2021, 13, 7.	1.7	13
130	Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Expert Review of Anticancer Therapy, 2007, 7, 551-566.	1.1	12
131	Targeting the Bone Marrow Microenvironment. Cancer Treatment and Research, 2016, 169, 63-102.	0.2	12
132	Plasmacytoid Dendritic Cells Induce Growth and Survival of Multiple Myeloma Cells: Therapeutic Application Blood, 2007, 110, 3507-3507.	0.6	12
133	Evaluation of Antibody Responses to COVID-19 Vaccines among Solid Tumor and Hematologic Patients. Cancers, 2021, 13, 4312.	1.7	11
134	A role for bone turnover markers \hat{l}^2 -CrossLaps (CTX) and amino-terminal propeptide of type I collagen (PINP) as potential indicators for disease progression from MGUS to multiple myeloma. Leukemia and Lymphoma, 2018, 59, 2431-2438.	0.6	10
135	Sulforaphane and PEITC Augment Activity of Conventional and Novel Anti-Myeloma Drugs. Blood, 2008, 112, 2648-2648.	0.6	10
136	New insights, recent advances, and current challenges in the biological treatment of multiple myeloma. Expert Opinion on Biological Therapy, 2013, 13, S35-S53.	1.4	9
137	Novel Targets and Derived Small Molecule Inhibitors in Multiple Myeloma. Current Cancer Drug Targets, 2012, 12, 797-813.	0.8	8
138	Quality of life analyses in patients with multiple myeloma: results from the Selinexor (KPT-330) Treatment of Refractory Myeloma (STORM) phase 2b study. BMC Cancer, 2021, 21, 993.	1.1	8
139	The orally available multikinase inhibitor regorafenib (BAY 73-4506) in multiple myeloma. Annals of Hematology, 2018, 97, 839-849.	0.8	7
140	Current and developing synthetic pharmacotherapy for treating relapsed/refractory multiple myeloma. Expert Opinion on Pharmacotherapy, 2017, 18, 1061-1079.	0.9	5
141	Inhibition of the TGF-Î ² Signaling Pathway in Tumor Cells. , 2007, 172, 77-97.		5
142	CCR1 Inhibition Impairs Osteoclast Activity and Interaction with Myeloma Cells Blood, 2006, 108, 3494-3494.	0.6	5
143	FQPD, a novel immunomodulatory drug, has significant in vitro activity in multiple myeloma. British Journal of Haematology, 2006, 132, 698-704.	1.2	4
144	Essential role of the histone lysine demethylase KDM4A in the biology of malignant pleural mesothelioma (MPM). British Journal of Cancer, 2021, 125, 582-592.	2.9	4

#	Article	IF	CITATIONS
145	Carfilzomib-Revlimid-Dexamethasone Vs. Carfilzomib-Thalidomide-Dexamethasone Weekly (After 2) Tj ETQq1 1 0. Patients with Newly Diagnosed Multiple Myeloma (NDMM) - Interim Efficacy Analysis of Combined Data (AGMT MM-02). Blood, 2019, 134, 696-696.	784314 r 0.6	gBT /Overlo
146	Targeting MEK1/2 Signaling Cascade by AS703026, a Novel Selective MEK1/2 Inhibitor, Induces Pleiotropic Anti-Myeloma Activity in Vitro and In Vivo Blood, 2009, 114, 3848-3848.	0.6	4
147	C-Myc- Dependent Stabilization of Hif-1alpha in MM: Therapeutic Implications. Blood, 2008, 112, 2750-2750.	0.6	4
148	A Novel Orally Available Proteasome Inhibitor NPI-0052 Induces Killing in Multiple Myeloma (MM) Cells Resistant to Conventional and Bortezomib Therapies Blood, 2004, 104, 2405-2405.	0.6	3
149	Combination of a Novel Proteasome Inhibitor NPI-0052 and Lenalidomide Trigger in Vivo Synergistic Cytotoxicity in Multiple Myeloma. Blood, 2008, 112, 3662-3662.	0.6	3
150	JNK Activation and Fas Up-Regulation Precede Proteasomal Degradation of Topoisomerase I in SN38-Mediated Cytotoxicity Against Multiple Myeloma Blood, 2004, 104, 3413-3413.	0.6	3
151	Emerging Therapies for Multiple Myeloma. American Journal of Cancer, 2006, 5, 141-153.	0.4	2
152	Vascular Endothelial Growth Factor (VEGF) Is a Growth and Survival Factor in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 4892-4892.	0.6	2
153	The PKC- Inhibitor Enzastaurin Inhibits MM Cell Growth, Survival and Migration in the Bone Marrow Microenvironment Blood, 2005, 106, 1584-1584.	0.6	2
154	The Selective Protein Kinase CB Inhibitor, Enzastaurin, Induces In Vitro and In Vivo Antitumor Activity in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2496-2496.	0.6	2
155	Novel Transforming Mutations of CBL in Human Acute Myeloid Leukemia. Blood, 2008, 112, 2948-2948.	0.6	2
156	Enhanced Cytotoxicity of Monoclonal Antibody SGN-40 and Immunomodulatory Drug IMiD3 Against Human Multiple Myeloma Blood, 2004, 104, 1498-1498.	0.6	2
157	The Jak2 V617F Oncogene Associated with Polycythemia Vera Requires a Functional FERM Domain for Transformation and for Expression of the Myc and Pim Proto-Oncogenes Blood, 2006, 108, 3611-3611.	0.6	2
158	CS1, a New Surface Target on Multiple Myeloma (MM) Cells, Protects Myeloma Cells from Apoptosis Via Regulation of ERK1/2, AKT and STAT3 Signaling Cascades Blood, 2007, 110, 109-109.	0.6	2
159	Delineation of Canonical and Non-Canonical NF-κB Pathways in Multiple Myeloma: Therapeutic Implications Blood, 2007, 110, 670-670.	0.6	2
160	The AP-1 Transcription Factor JunB Promotes Multiple Myeloma (MM) Cell Proliferation, Survival and Drug Resistance in the Bone Marrow Microenvironment. Blood, 2014, 124, 3446-3446.	0.6	2
161	MM-associated anemia: more than "crowding out―HSPCs. Blood, 2012, 120, 2539-2540.	0.6	1
162	Efficacy of Subcutaneous Bortezomib in the Management of Patients with Multiple Myeloma or Relapsed Mantle Cell Lymphoma. Clinical Medicine Insights Therapeutics, 2014, 6, CMT.S9308.	0.4	1

#	Article	IF	Citations
163	Toward optimizing pomalidomide therapy in MM patients. Blood, 2015, 125, 3968-3969.	0.6	1
164	Choosing an appropriate salvage therapy for a patient with multiple myeloma. Expert Opinion on Pharmacotherapy, 2018, 19, 1511-1516.	0.9	1
165	Targeting Multiple Myeloma Tumor Angiogenesis: Focus on VEGF. , 2013, , 283-299.		1
166	Mitochondria and Caspase-Independent Cell-Death Triggered by GCS-100, a Novel Carbohydrate-Based Therapeutic in Multiple Myeloma (MM) Cells Blood, 2004, 104, 2456-2456.	0.6	1
167	Requirement of Caspase-8 Versus Caspase-9 during Apoptosis in Multiple Myeloma Cells Induced by Bortezomib- or a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3378-3378.	0.6	1
168	Expression and Modulation of Carbohydrate-Binding Protein Galectin-3 in Multiple Myeloma Cells by Combined Treatment with GCS-100 and Dexamethasone Blood, 2005, 106, 4447-4447.	0.6	1
169	Inhibition of ERK1/2 Activity by the MEK1/2 Inhibitor AZD6244 (ARRY-142886) Induces Human Multiple Myeloma Cell Apoptosis in the Bone Marrow Microenvironment: A New Therapeutic Strategy for MM Blood, 2006, 108, 3460-3460.	0.6	1
170	Novel Etodolac Analog SDX-308 (CEP-18082) Induces Cytotoxicity in Multiple Myeloma Cells Associated with Inhibition of Wnt/l²-Catenin Pathway Blood, 2006, 108, 5005-5005.	0.6	1
171	Potential Therapeutic Role of the Selective Adhesion Molecule (SAM) Inhibitor Natalizumab in Multiple Myeloma Blood, 2009, 114, 1850-1850.	0.6	1
172	Niches Within the Multiple Myeloma Bone Marrow Microenvironment. Translational Medicine Series, 2007, , 61-74.	0.0	1
173	Combination of the mTOR Inhibitor Rapamycin and Revlimidâ,,¢ (CC-5013) Has Synergistic Activity in Multiple Myeloma (MM) Blood, 2004, 104, 1492-1492.	0.6	1
174	TGF-Î ² Receptor I Kinase Inhibitor Downregulates Cytokine Secretion and Multiple Myeloma Cell Growth in the Bone Marrow Microenvironment Blood, 2004, 104, 2355-2355.	0.6	1
175	Increased TCF-4 Expression Correlates with Reduced Caspase-3 Induction and Confers Resistance to Bortezomib Blood, 2004, 104, 285-285.	0.6	1
176	Endothelial Cells Induce Multiple Myeloma Cell Proliferation Protect Against Conventional and Novel Therapies Blood, 2004, 104, 2354-2354.	0.6	1
177	Caveolin-1 Is Required for VEGF- Triggered Multiple Myeloma Cell Migration and Is Targeted by Bortezomib (Velcade®) Blood, 2004, 104, 2453-2453.	0.6	1
178	A Novel Inosine Monophosphate Dehydrogenase Inhibitor VX-944 Overcomes Conventional Drug-Resistance in Multiple Mueloma Cells in the Bone Marrow Microenvironment Blood, 2004, 104, 2468-2468.	0.6	1
179	The Tyrosine Kinase Inhibitor Adaphostin (NSC 680410), but Not Imatinib Mesylate, Inhibits Survival and Src Tyrosine Kinase Family-Triggered Signaling Pathways of MM Cells Blood, 2004, 104, 3352-3352.	0.6	1
180	Targeting Src- Family Kinase Activation and Downstream Molecular Events To Overcome MM Cell Growth, Survival, and Drug- Resistance Blood, 2005, 106, 1583-1583.	0.6	1

#	Article	IF	Citations
181	Perifosine, an Oral Bioactive Novel Alkyl-Phospholipid, Inhibits Akt and Induces In Vitro and In Vivo Cytotoxicity in Human Multiple Myeloma (MM) Cells Blood, 2005, 106, 250-250.	0.6	1
182	The BAFF Inhibitor AMG523 Blocks Adhesion and Survival of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment: Clinical Implication Blood, 2006, 108, 3452-3452.	0.6	1
183	Combination of Proteasome Inhibitors Bortezomib and NPI-0052 Trigger In Vivo Synergistic Cytotoxicity in Multiple Myeloma Blood, 2007, 110, 2524-2524.	0.6	1
184	CS1 Promotes Multiple Myeloma Cell Adhesion, Clonogenic Growth, and Tumorigenicity Via C-Maf-Mediated Interactions with Bone Marrow Stromal Cells (BMSCs). Blood, 2008, 112, 840-840.	0.6	1
185	On the continuous (R)evolution of antibody-based and CAR T cell therapies in multiple myeloma: an early 2022 glance into the future. Expert Opinion on Pharmacotherapy, 2022, 23, 1425-1444.	0.9	1
186	Targeting the Ubiquitin-proteasome System for the Treatment of Multiple Myeloma and Other Human Diseases. Clinical Medicine Insights Therapeutics, 2010, 2, CMT.S2889.	0.4	0
187	Ask the Experts: Deriving new treatment strategies in multiple myeloma. International Journal of Hematologic Oncology, 2012, 1, 21-26.	0.7	0
188	The Pathophysiologic Role of JunB in Multiple Myeloma Pathogenesis: Focus on Angiogenesis. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S77.	0.2	0
189	Combined targeting of distinct c-Myc and JunB transcriptional programs for multiple myeloma therapy. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e106-e107.	0.2	0
190	Pim Kinases Mediate Viability Signals Downstream of the Tyrosine Kinase Oncogenes BCR-ABL and FLT3-ITD Blood, 2004, 104, 557-557.	0.6	0
191	Effects of the Indazolylpyrimidine GW786034 on Angiogenesis and MM Cell Growth: Therapeutic Implications Blood, 2004, 104, 2452-2452.	0.6	0
192	Atiprimod (N-N-diethl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) Inhibits Myeloma in Vivo Blood, 2004, 104, 2401-2401.	0.6	0
193	VEGF Upregulates Mcl-1 Expression and Protects Multiple Myeloma Cells Against Starvation Induced-Apoptosis Blood, 2004, 104, 631-631.	0.6	0
194	Lack of Mcl-1 Confers Resistance to Bortezomid in Multiple Myeloma Blood, 2004, 104, 2445-2445.	0.6	0
195	Molecular Characterization of PS-341 (bortezomib) Resistance: Implications for Overcoming Resistance Using Lysophosphatidic Acid Acyltransferase (LPAAT)-β Inhibitors Blood, 2004, 104, 2411-2411.	0.6	0
196	Anti-Tumor Activity of a Novel Immunosuppressant FTY720 in Multiple Myeloma Blood, 2004, 104, 3456-3456.	0.6	0
197	P38 MAPK Inhibition Enhances PS-341 (bortezomib)-Induced Cytotoxicity Against Multiple Myeloma Cells Blood, 2004, 104, 3348-3348.	0.6	0
198	Inhibition of Human Plasmacytoma Cell Growth by a Novel JAK Kinase Inhibitor Blood, 2004, 104, 644-644.	0.6	0

#	Article	IF	CITATIONS
199	Targeting Mitochondrial Factor Smac/DIABLO as Therapy for Multiple Myeloma (MM) Blood, 2004, 104, 764-764.	0.6	O
200	The JAK Inhibitor INCB20 Induces Antiproliferative and Apoptotic Effects in Human Myeloma Cells In Vitro and In Vivo Blood, 2005, 106, 3357-3357.	0.6	0
201	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40-Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications Blood, 2005, 106, 5150-5150.	0.6	O
202	Role of BAFF in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment Blood, 2005, 106, 627-627.	0.6	0
203	R-Etodolac and a Novel Indole-Pyran Structural Analog, SDX-308, Induce Cytotoxicity and Overcome Drug Resistance in Multiple Myeloma Blood, 2005, 106, 1580-1580.	0.6	0
204	In Vitro Generation of Highly-Purified Functional Invariant NKT Cells: A Strategy for Immunotherapy in Multiple Myeloma Blood, 2005, 106, 5183-5183.	0.6	0
205	Up-Regulation of c-Jun contributes to the Induction of Apoptosis by Adaphostin in Human Multiple Myeloma Cells Blood, 2005, 106, 1585-1585.	0.6	0
206	The Jak2V617F Oncogene Associated with Polycythemia Vera Regulates G1/S-Phase Transition Blood, 2005, 106, 3510-3510.	0.6	0
207	Histone Deacetylase-6 (HDAC6) Modulates Akt and STAT3 Activity Via Heat Shock Protein (Hsp) 90 in Human Multiple Myeloma (MM) Cells Blood, 2006, 108, 3426-3426.	0.6	0
208	MLN3897, a Novel CCR1 Antagonist, Inhibits Osteoclastogenesis by Blocking Early ERK Activation Blood, 2006, 108, 1636-1636.	0.6	0
209	Akt Inhibitor Perifosine-Induced Cytotoxicity Is Associated with Significant Downregulation of Survivin in Human Multiple Myeloma (MM) Cells Blood, 2006, 108, 3410-3410.	0.6	0
210	The Small-Molecule VEGF-Receptor Inhibitor Pazopanib (GW786034B) Targets Both Tumor and Endothelial Cells in Multiple Myeloma Blood, 2006, 108, 5003-5003.	0.6	0
211	BIRB796 Inhibits p38 MAPK/Hsp27 Pathway and Enhances Cytotoxicity Triggered by Bortezomib, Hsp90 Inhibitor, and Dexamethasone in Multiple Myeloma Blood, 2006, 108, 3440-3440.	0.6	0
212	p38MAPK Inhibitor LSN2322600 Modulates the Bone Marrow Microenvironment and Inhibits Osteoclastogenesis in Multiple Myeloma Blood, 2006, 108, 5042-5042.	0.6	0
213	Targeting PKC in Multiple Myeloma: In Vitro and In Vivo Effects of the Novel, Orally Available Small-Molecule Inhibitor Enzastaurin (LY317615.HCl) Blood, 2006, 108, 3466-3466.	0.6	0
214	Identification of Novel Antigens with Induced Immune Response in MGUS Blood, 2006, 108, 655-655.	0.6	0
215	In Vitro Generation of Highly Purified Functional Invariant NKT Cells in Multiple Myeloma: A Strategy for Immunotherapy Blood, 2006, 108, 5104-5104.	0.6	0
216	Targeting Cyclin D1 in the Treatment of Multiple Myeloma: Preclinical Validation of a Novel Specific Small Molecule Cyclin D1 Inhibitor, P276-00 Blood, 2006, 108, 3454-3454.	0.6	0

#	Article	IF	CITATIONS
217	Upregulation of c-Jun Induces Cell Death Via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma Blood, 2006, 108, 3415-3415.	0.6	0
218	Bcl-2, Mcl-1 and p53 Expression Confer Sensitivity to Bcl-2 Inhibitor ABT-737 in Multiple Myeloma Blood, 2006, 108, 3474-3474.	0.6	0
219	Activation of B-Cell Maturation Antigen (BCMA) on Human Multiple Myeloma Cells by a Proliferation-Inducing Ligand (APRIL) Promotes Myeloma Cell Function in the Bone Marrow Microenvironment Blood, 2007, 110, 1503-1503.	0.6	0
220	Targeting CCR1 for the Treatment of Osteolytic Bone Disease in Multiple Myeloma Blood, 2007, 110, 2503-2503.	0.6	0
221	Preclinical Validation of a Clinical Grade Novel Specific Small Molecule Cyclin D1 Inhibitor, P276-00 for the Treatment of Multiple Myeloma Blood, 2007, 110, 256-256.	0.6	0
222	Inhibition of Hsp90 Targets Multiple Myeloma Cell Growth, Angiogenesis, and Osteoclastogenesis in the BM Microenvironment Blood, 2007, 110, 2522-2522.	0.6	0
223	BCR-ABL Induces Error-Prone Single Strand Annealing in Transformed Cells Blood, 2007, 110, 2937-2937.	0.6	0
224	The Tyrophostin Adaphostin (NSC680410) Inhibits Multiple Myeloma Bone Marrow Angiogenesis In Vitro and In Vivo Blood, 2007, 110, 2507-2507.	0.6	0
225	Targeting Proteinkinase C Alters ER-Stress and b-Catenin Signaling in Multiple Myeloma: Therapeutic Implications Blood, 2007, 110, 258-258.	0.6	0
226	Rational for a Combination of Bortezomib and Doxorubicin in the Treatment of Multiple Myeloma: A Pivotal Role for Mcl-1 Blood, 2007, 110, 1501-1501.	0.6	0
227	The Novel, Orally Available Multi-Kinase Inhibitor BAY 73-4506 in Multiple Myeloma. Blood, 2008, 112, 2766-2766.	0.6	0
228	Mcl-1 Fragment Mcl-1(128–350) Induces Inhibition of Multiple Myeloma Cell Proliferation and Apoptosis Via Both Upregulation of C-Jun as Well as Modulation of Its Transcriptional Activity. Blood, 2008, 112, 2751-2751.	0.6	0
229	Canonical and Non Canonical Activation of Hedgehog Pathway in Multiple Myeloma. Blood, 2008, 112, 2748-2748.	0.6	0
230	Sp1 Transcription Factor as a Novel Therapeutic Target in Multiple Myeloma (MM). Blood, 2008, 112, 3664-3664.	0.6	0
231	Targeting PKC: A Novel Role for Beta-catenin in ER Stress and Apoptotic Signaling. Blood, 2008, 112, 2763-2763.	0.6	0
232	Bcl6 as a Novel Therapeutic Target in Multiple Myeloma (MM) Blood, 2009, 114, 295-295.	0.6	0
233	The Evolution and Maintenance of the Multiple Myeloma Cell Clone within the Liquid Bone Marrow Compartment., 2010,, 2799-2809.		0
234	The Pathophysiologic Role of the Bone Marrow Environment and its Niches in Multiple Myeloma. , 2010, , 2811-2819.		0

#	Article	IF	Citations
235	Anti-Myeloma Activity of Enzymatically Activated Melphalan Prodrug J1. Blood, 2010, 116, 1838-1838.	0.6	O
236	HIF regulation in tumor progression and angiogenesis and potential therapeutic agents. Drugs of the Future, 2011, 36, 391.	0.0	0
237	Abstract 660: Inhibition of centrosomal clustering suppresses tumor growthin vivo. , 2011, , .		0
238	Targeting Mcl-1 for Multiple Myeloma (MM) Therapy: Drug-Induced Generation of Mcl-1 Fragment Mcl-1128–350 Triggers MM Cell Death Via c- Jun Upregulation. Blood, 2012, 120, 3959-3959.	0.6	0
239	Abstract 3383: JunB/AP-1 controls MM cell proliferation, survival and drug resistance in the bone marrow microenvironment. , 2014 , , .		0
240	Abstract 2912: The AP-1 transcription factor JunB promotes multiple myeloma cell proliferation, survival and drug resistance in the bone marrow microenvironment., 2016,,.		0
241	The Pathophysiologic Role of JunB in Multiple Myeloma Pathogenesis: Focus on Bone Marrow Angiogenesis. Blood, 2016, 128, 2091-2091.	0.6	0
242	Multiple Myeloma Pathogenesis: The Role of Junb in Bone Marrow Angiogenesis. Blood, 2019, 134, 4341-4341.	0.6	0
243	Combined Targeting of Distinct c-Myc and JunB Transcriptional Programs for Multiple Myelioma Therapy. Blood, 2019, 134, 4415-4415.	0.6	0
244	Combined Targeting of Distinct c-Myc and JunB Transcriptional Programs Inducing Synergistic Anti-Myeloma Activity. Blood, 2021, 138, 2644-2644.	0.6	0
245	Delineating CDK9 Regulated Molecular Events for the Development of Rationally Derived Multiple Myeloma Treatment Strategies. Blood, 2021, 138, 1598-1598.	0.6	0
246	Composition of the Immune Environment at Baseline Correlates with Time to Response and Treatment Outcome in Newly Diagnosed Transplant-Ineligible Multiple Myeloma (MM) Patients Randomized to Krd or Ktd Followed By Carfilzomib Maintenance or Observation (AGMT_MM 02 Study). Blood, 2021, 138, 1669-1669.	0.6	O
247	Editorial: Multiple Myeloma Immunotherapies. Current Cancer Drug Targets, 2017, 17, 768.	0.8	O