
Stephen E Creager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of nanoparticle size and surface chemistry on ion transport and nanostructure of perfluorosulfonic acid ionomer nanocomposites. Soft Matter, 2022, 18, 3342-3357.	2.7	2
2	High-Resolution Ion-Flux Imaging of Proton Transport through Graphene Nafion Membranes. ACS Nano, 2022, 16, 5233-5245.	14.6	23
3	Ultrasensitive Detection of Surfaceâ€Confined Redox Molecules by Mediationâ€Based Amplification. ChemElectroChem, 2021, 8, 1873-1880.	3.4	1
4	Enhanced Proton Selectivity in Ionomer Nanocomposites Containing Hydrophobically Functionalized Silica Nanoparticles. Macromolecules, 2021, 54, 440-449.	4.8	5
5	Nanobiosensing with graphene and carbon quantum dots: Recent advances. Materials Today, 2020, 39, 23-46.	14.2	66
6	Effects of Atomic-Layer-Deposition Alumina on Proton Transmission through Single-Layer Graphene in Electrochemical Hydrogen Pump Cells. ACS Applied Energy Materials, 2020, 3, 1364-1372.	5.1	6
7	Digital Simulation and Experimental Validation of Redox Mediation at an Electroactive Monolayer-Coated Electrode. Journal of the Electrochemical Society, 2020, 167, 046512.	2.9	5
8	Vibrational Spectroscopy in the Study of Composite and Nanostructured Materials for Electrochemistry. ECS Meeting Abstracts, 2020, MA2020-01, 2738-2738.	0.0	0
9	Rapid Proton Transmission through Nafion Graphene ALD Alumina Nafion Membranes. ECS Meeting Abstracts, 2020, MA2020-01, 814-814.	0.0	0
10	Depth-Profiling Buried Interfaces within Polymer Electrolyte Membranes. ECS Meeting Abstracts, 2020, MA2020-01, 1642-1642.	0.0	0
11	Selective Cation Transport through Graphene in Nafion Graphene Nafion Membranes. ECS Meeting Abstracts, 2020, MA2020-01, 2707-2707.	0.0	0
12	Graphene-Based Proton Transmission and Hydrogen Crossover Mitigation in Electrochemical Hydrogen Pump Cells. ECS Transactions, 2019, 92, 439-444.	0.5	5
13	Highly Luminescent Heavier Main Group Analogues of Boron-Dipyrromethene. Journal of the American Chemical Society, 2019, 141, 8703-8707.	13.7	30
14	Enhanced Signal Amplification in a Toll-like Receptor-4 Biosensor Utilizing Ferrocene-Terminated Mixed Monolayers. ACS Sensors, 2019, 4, 143-151.	7.8	21
15	A charge-transfer resistance model and Arrhenius activation analysis for hydrogen ion transmission across single-layer graphene. Electrochimica Acta, 2019, 296, 1-7.	5.2	10
16	Single-Layer Graphene Sandwiched between Proton-Exchange Membranes for Selective Proton Transmission. ACS Applied Nano Materials, 2019, 2, 964-974.	5.0	32
17	Single Layer Graphene for Estimation of Axial Spatial Resolution in Confocal Raman Microscopy Depth Profiling. Analytical Chemistry, 2019, 91, 1049-1055.	6.5	20
18	A Charge-Transfer-Resistance Model for Proton Transmission through CVD Single-Layer Graphene in Proton-Exchange-Membrane Cells. ECS Meeting Abstracts, 2019, , .	0.0	0

STEPHEN E CREAGER

#	Article	IF	CITATIONS
19	Studies on Proton Transmission across Graphene in Proton-Exchange Membrane Structures. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Protons Are Transmitted across Single-Layer Graphene in Proton-Exchange-Membrane (PEM) Sandwich Structures More Than 100 Times Faster Than Other Cations. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Comsol Simulation of Hierarchical Ordered Porous Microstructure Electrode. ECS Meeting Abstracts, 2019, , .	0.0	0
22	High Performance Li-Ion Battery Electrode with Hierarchical Ordered Porous Microstructure. ECS Meeting Abstracts, 2019, , .	0.0	0
23	Graphene-Based Proton Transmission and Hydrogen Crossover Mitigation in Electrochemical Hydrogen Pump Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
24	A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes. ACS Omega, 2018, 3, 4502-4508.	3.5	14
25	Selective Proton/Deuteron Transport through Nafion Graphene Nafion Sandwich Structures at High Current Density. Journal of the American Chemical Society, 2018, 140, 1743-1752.	13.7	75
26	Vibrational Spectroscopy for the Determination of Ionizable Group Content in Ionomer Materials. Applied Spectroscopy, 2018, 72, 141-150.	2.2	8
27	Proton Transfer Can Occur at High Rates through Single-Layer Graphene in Nafion Graphene Nafion Sandwich Structures. ECS Meeting Abstracts, 2018, , .	0.0	0
28	Spreadsheet-Based Cyclic Voltammetry Simulation of Mediated Ferrocyanide Oxidation By Ferrocene Derivatives in Alkanethiol-Based Self-Assembled Monolayers on Gold Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
29	Electrochemical Proton / Deuteron Separation in Nafion Graphene Nafion Hydrogen Pump Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
30	Macroporous Lithium Battery Cathodes Prepared By Aqueous Freeze Casting. ECS Meeting Abstracts, 2018, , .	0.0	0
31	Polyelectrolyte membrane PEM and fuelcell catalyst studies using a miniaturized PEM fuel cell test fixture. , 2018, , .		0
32	Ferrocenyl-Based Signal Amplification across Self-Assembled Monolayers in Electrochemical Biosensors. ECS Meeting Abstracts, 2018, , .	0.0	0
33	A convenient miniature test platform for polyelectrolyte membrane fuel-cell research. Journal of Electroanalytical Chemistry, 2017, 797, 8-15.	3.8	14
34	Asymmetric polysilazane-derived ceramic structures with multiscalar porosity for membrane applications. Microporous and Mesoporous Materials, 2016, 232, 196-204.	4.4	22
35	Rational design of methacrylate monomers containing oxadiazole moieties for singleâ€layer organic light emitting devices. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1663-1673.	2.1	3
36	Postface: Nanomaterials for Energy, A Look Forward. ACS Symposium Series, 2015, , 269-275.	0.5	0

STEPHEN E CREAGER

#	Article	IF	CITATIONS
37	Electrochemical dioxygen reduction catalyzed by a (nitro)cobalt(perfluorophthalocyanine) complex and the possibility of a peroxynitro complex intermediate. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1185-1196.	0.8	1
38	Electrochemical Behavior of Platinum Nanoparticles on a Carbon Xerogel Support Modified with a [(Trifluoromethyl)-benzenesulfonyl]imide Electrolyte. Journal of Physical Chemistry B, 2014, 118, 14115-14123.	2.6	5
39	Optimized statically nonâ€wetting hydrophobic electrospun surface of perfluorocyclobutyl aryl ether polymer. Polymer International, 2013, 62, 1152-1158.	3.1	9
40	Mesoporous Carbon/Zirconia Composites: A Potential Route to Chemically Functionalized Electrically-Conductive Mesoporous Materials. Langmuir, 2012, 28, 3259-3270.	3.5	13
41	A new fluorinated anion for room-temperature ionic liquids. Journal of Fluorine Chemistry, 2011, 132, 52-56.	1.7	18
42	Perfluoroalkyl Phosphonic and Phosphinic Acids as Proton Conductors for Anhydrous Protonâ€Exchange Membranes. ChemPhysChem, 2010, 11, 2871-2878.	2.1	38
43	Evaluation of non-specific binding suppression schemes for neutravidin and alkaline phosphatase at the surface of reticulated vitreous carbon electrodes. Analytica Chimica Acta, 2010, 657, 154-162.	5.4	6
44	Effect of Perfluoroalkyl Chain Length on Proton Conduction in Fluoroalkylated Phosphonic, Phosphinic, and Sulfonic Acids. Journal of Physical Chemistry B, 2010, 114, 14972-14976.	2.6	15
45	Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes. Electrochimica Acta, 2009, 54, 5877-5883.	5.2	21
46	Superporous agarose—Reticulated vitreous carbon electrodes for electrochemical sandwich bioassays. Analytica Chimica Acta, 2008, 628, 190-197.	5.4	5
47	Preparation and characterization of superporous agarose–reticulated vitreous carbon electrodes as platforms for electrochemical bioassays. Analytica Chimica Acta, 2008, 622, 1-10.	5.4	8
48	Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles. Journal of Materials Chemistry, 2008, 18, 594.	6.7	86
49	Solvents and Supporting Electrolytes. , 2007, , 57-72.		28
50	Electrochemical tuning the optical properties of crystalline colloidal arrays composed of poly(3,4-ethylenedioxythiophene) coated silica particles. Journal of Materials Chemistry, 2007, 17, 1149.	6.7	15
51	Alternative Trifluorovinyl Ether Derived Fluoropolymer Membranes and Functionalized Carbon Composite Electrodes for Fuel Cells. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 297-313.	2.2	11
52	Electrochemical Grafting of an Aryl Fluorosulfonimide Electrolyte onto Glassy Carbon. Langmuir, 2006, 22, 10747-10753.	3.5	15
53	Electron Transfer at Self-Assembled Monolayers Measured by Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2004, 126, 1485-1492.	13.7	201
54	Redox Kinetics in Monolayers on Electrodes:  Electron Transfer Is Sluggish for Ferrocene Groups Buried within the Monolayer Interior. Journal of Physical Chemistry B, 2001, 105, 8739-8745.	2.6	118

STEPHEN E CREAGER

#	Article	IF	CITATIONS
55	Electron Transfer at Electrodes through Conjugated "Molecular Wire―Bridges. Journal of the American Chemical Society, 1999, 121, 1059-1064.	13.7	414
56	A Signal Amplification Scheme for Ultrasensitive Amperometric Detection in Flowing Streams. Analytical Chemistry, 1999, 71, 5101-5108.	6.5	24
57	Enhanced Barrier Properties of Alkanethiol-Coated Gold Electrodes by 1-Octanol in Solution. Langmuir, 1998, 14, 2129-2133.	3.5	42
58	A New Way of Using ac Voltammetry To Study Redox Kinetics in Electroactive Monolayers. Analytical Chemistry, 1998, 70, 4257-4263.	6.5	225
59	Long-Range Electronic Coupling between Ferrocene and Gold in Alkanethiolate-based Monolayers on Electrodes. Journal of Physical Chemistry B, 1997, 101, 8286-8291.	2.6	236
60	Electrochemical Rectification at a Monolayer-Modified Electrode. The Journal of Physical Chemistry, 1996, 100, 17050-17058.	2.9	99
61	Competitive self-assembly and electrochemistry of some ferrocenyl-n-alkanethiol derivatives on gold. Journal of Electroanalytical Chemistry, 1994, 370, 203-211.	3.8	119
62	Chain Length and Solvent Effects on Competitive Self-Assembly of Ferrocenylhexanethiol and 1-Alkanethiols onto Gold. Langmuir, 1994, 10, 1186-1192.	3.5	94
63	Consequences of microscopic surface roughness for molecular self-assembly. Langmuir, 1992, 8, 854-861.	3.5	200
64	Redox and ion-pairing thermodynamics in self-assembled monolayers. Langmuir, 1991, 7, 2307-2312.	3.5	338