David W Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5942125/publications.pdf Version: 2024-02-01

ΠΛΥΙΟ W C. ΡΛΗΛΜ

#	Article	IF	CITATIONS
1	Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes. Science, 1996, 272, 991-995.	12.6	426
2	Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 1999, 48, 237-262.	1.4	385
3	Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature, 1995, 374, 34-39.	27.8	368
4	Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 2003, 423, 956-961.	27.8	366
5	Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera. Marine Micropaleontology, 1981, 6, 483-497.	1.2	266
6	Vesicle-Specific Noble Gas Analyses of "Popping Rock": Implications for Primordial Noble Gases in Earth. Science, 1997, 276, 568-571.	12.6	235
7	Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth and Planetary Science Letters, 1990, 97, 268-289.	4.4	223
8	Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 2003, 421, 252-256.	27.8	206
9	Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 2007, 96, 108-126.	1.4	205
10	Metal diagenesis in oxic marine sediments. Earth and Planetary Science Letters, 1982, 61, 211-219.	4.4	201
11	Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 2000, 174, 247-263.	4.4	140
12	Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochimica Et Cosmochimica Acta, 1982, 46, 1281-1292.	3.9	137
13	Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth and Planetary Science Letters, 1992, 110, 121-131.	4.4	136
14	He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts. Contributions To Mineralogy and Petrology, 1988, 99, 446-463.	3.1	134
15	Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature, 1990, 347, 545-548.	27.8	131
16	Correlated geophysical, geochemical, and volcanological manifestations of plume-ridge interaction along the Galápagos Spreading Center. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-14.	2.5	119
17	Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth and Planetary Science Letters, 1998, 160, 241-255.	4.4	112
18	The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 2005, 238, 96-109.	4.4	112

DAVID W GRAHAM

#	Article	IF	CITATIONS
19	Between a Hotspot and a Cold Spot: Isotopic Variation in the Southeast Indian Ridge Asthenosphere, 86degreesE-118degreesE. Journal of Petrology, 2002, 43, 1155-1176.	2.8	110
20	Mantle Plume Helium in Submarine Basalts from the Galapagos Platform. Science, 1993, 262, 2023-2026.	12.6	108
21	Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth and Planetary Science Letters, 1992, 110, 133-147.	4.4	101
22	Origin of a â€~Southern Hemisphere' geochemical signature in the Arctic upper mantle. Nature, 2008, 453, 89-93.	27.8	96
23	8. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. , 2002, , 247-318.		92
24	Upper Mantle Pollution during Afar Plume–Continental Rift Interaction. Journal of Petrology, 2012, 53, 365-389.	2.8	88
25	Carbonate chemistry in marine pore waters: MANOP sites C and S. Earth and Planetary Science Letters, 1982, 61, 220-232.	4.4	85
26	186Os and 187Os enrichments and high-3He/4He sources in the Earth's mantle: Evidence from Icelandic picrites. Geochimica Et Cosmochimica Acta, 2007, 71, 4570-4591.	3.9	80
27	The behavior and concentration of CO2 in the suboceanic mantle: Inferences from undegassed ocean ridge and ocean island basalts. Lithos, 2015, 236-237, 338-351.	1.4	73
28	Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth and Planetary Science Letters, 1996, 144, 213-222.	4.4	71
29	Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 1999, 24, 237-262.	0.3	70
30	Hotspot–ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul islands: helium isotope evidence. Earth and Planetary Science Letters, 1999, 167, 297-310.	4.4	69
31	Petrology and geochronology of basalt breccia from the 1996 earthquake swarm of Loihi seamount, Hawaii: magmatic history of its 1996 eruption. Bulletin of Volcanology, 1998, 59, 577-592.	3.0	68
32	Helium isotope disequilibrium and geochronology of glassy submarine basalts. Nature, 1987, 326, 384-386.	27.8	62
33	Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts. Journal of Volcanology and Geothermal Research, 2009, 188, 128-140.	2.1	58
34	Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature, 2006, 440, 199-202.	27.8	57
35	Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochimica Et Cosmochimica Acta, 2009, 73, 3423-3449.	3.9	52
36	Mechanisms of magmatic gas loss along the Southeast Indian Ridge and the Amsterdam –St. Paul Plateau. Earth and Planetary Science Letters, 2002, 203, 131-148.	4.4	43

DAVID W GRAHAM

#	Article	IF	CITATIONS
37	Upper-mantle dynamics revealed by helium isotope variations along the southeast Indian ridge. Nature, 2001, 409, 701-703.	27.8	42
38	Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth and Planetary Science Letters, 1996, 144, 491-503.	4.4	39
39	Helium isotopic textures in Earth's upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 2048-2074.	2.5	39
40	Helium isotopes in some historical lavas from Mount Vesuvius. Journal of Volcanology and Geothermal Research, 1993, 58, 359-366.	2.1	38
41	Fractionation of noble gases (He, Ar) during MORB mantle melting: a case study on the Southeast Indian Ridge. Earth and Planetary Science Letters, 2004, 227, 457-472.	4.4	38
42	Anomalous seafloor spreading of the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. Journal of Geophysical Research, 2000, 105, 8243-8262.	3.3	37
43	Age constraints on crustal recycling to the mantle beneath the southern Chile Ridge: He-Pb-Sr-Nd isotope systematics. Journal of Geophysical Research, 1999, 104, 5097-5114.	3.3	32
44	Boomerang Seamount: the active expression of the Amsterdam–St. Paul hotspot, Southeast Indian Ridge. Earth and Planetary Science Letters, 2000, 183, 245-259.	4.4	32
45	Influence of the Amsterdam/St. Paul hot spot along the Southeast Indian Ridge between 77° and 88°E: Correlations of Sr, Nd, Pb, and He isotopic variations with ridge segmentation. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	31
46	Helium isotope variations in Juan De Fuca Ridge basalts. Geophysical Research Letters, 1993, 20, 1851-1854.	4.0	30
47	Asthenosphere–lithosphere interactions in Western Saudi Arabia: Inferences from 3He/4He in xenoliths and lava flows from Harrat Hutaymah. Lithos, 2016, 248-251, 339-352.	1.4	29
48	Reply to comment by T.M. Gerlach on "Mid-ocean ridge popping rocks: implications for degassing at ridge crests― Earth and Planetary Science Letters, 1991, 105, 568-573.	4.4	27
49	Distinguishing Plume and Metasomatized Lithospheric Mantle Contributions to Post-Flood Basalt Volcanism on the Southeastern Ethiopian Plateau. Journal of Petrology, 2019, 60, 1063-1094.	2.8	27
50	Mantle melting and magma supply to the Southeast Indian Ridge: The roles of lithology and melting conditions from U-series disequilibria. Earth and Planetary Science Letters, 2009, 278, 55-66.	4.4	26
51	Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen). Tectonophysics, 2015, 650, 3-17.	2.2	25
52	On late miocene abyssal hydrography. Marine Micropaleontology, 1981, 6, 451-464.	1.2	23
53	Diagenesis and convection reflected in pore water chemistry on the western flank of the East Pacific Rise, 20 degrees south. Earth and Planetary Science Letters, 1985, 76, 71-83.	4.4	23
54	Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle. Earth and Planetary Science Letters, 2013, 375, 196-208.	4.4	23

DAVID W GRAHAM

#	Article	IF	CITATIONS
55	Hydrogen isotopes in high 3He/4He submarine basalts: Primordial vs. recycled water and the veil of mantle enrichment. Earth and Planetary Science Letters, 2019, 508, 62-73.	4.4	23
56	Cretaceous-to-recent record of elevated3He/4He along the Hawaiian-Emperor volcanic chain. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	22
57	Tracking fluvial response to climate change in the Pacific Northwest: a combined provenance approach using Ar and Nd isotopic systems on fine-grained sediments. Quaternary Science Reviews, 2008, 27, 497-517.	3.0	21
58	Iron enrichments in hydrothermal plumes over the East Pacific Rise. Earth and Planetary Science Letters, 1986, 79, 250-254.	4.4	20
59	Mantle hotspot neon in basalts from the Northwest Lau Backâ€arc Basin. Geophysical Research Letters, 2012, 39, .	4.0	19
60	Deep-mantle krypton reveals Earth's early accretion of carbonaceous matter. Nature, 2021, 600, 462-467.	27.8	19
61	Plume–ridge interaction along the Galapagos Spreading Center: discerning between gas loss and source effects using neon isotopic compositions and 4He–40Arâ^—–CO2 relative abundances. Geochimica Et Cosmochimica Acta, 2011, 75, 1145-1160.	3.9	18
62	Comment on "A tenâ€year decrease in the atmospheric helium isotope ratio possibly caused by human activity― by Y. Sano et al Geophysical Research Letters, 1991, 18, 482-485.	4.0	17
63	Extreme incompatibility of helium during mantle melting: Evidence from undegassed mid-ocean ridge basalts. Earth and Planetary Science Letters, 2016, 454, 192-202.	4.4	15
64	An investigation of mid-ocean ridge degassing using He, CO2, and δ13C variations during the 2005–06 eruption at 9°50′N on the East Pacific Rise. Earth and Planetary Science Letters, 2018, 504, 84-93.	4.4	11
65	Spatial and temporal variability in Marquesas Islands volcanism revealed by 3He/4He and the composition of olivine-hosted melt inclusions. Chemical Geology, 2018, 477, 161-176.	3.3	10
66	Recycled Components in Mantle Plumes Deduced From Variations in Halogens (Cl, Br, and I), Trace Elements, and 3 He/ 4 He Along the Hawaiianâ€Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2019, 20, 277-294.	2.5	10
67	Predominantly recycled carbon in Earth's upper mantle revealed by He-CO2-Ba systematics in ultradepleted ocean ridge basalts. Earth and Planetary Science Letters, 2021, 554, 116646.	4.4	8
68	Variable Crustal Production Originating From Mantle Source Heterogeneity Beneath the South East Indian Ridge and Amsterdam‣t. Paul Plateau. Geochemistry, Geophysics, Geosystems, 2019, 20, 4635-4653.	2.5	3
69	Helium isotopes in historical lavas from Mount Vesuvius. Earth and Planetary Science Letters, 1999, 174, 241-244.	4.4	2
70	Coupled helium-lead isotope systematics in the Earth's mantle. Chemical Geology, 1988, 70, 50.	3.3	1
71	Neon illuminates the mantle. Nature, 2005, 433, 25-26.	27.8	1
72	Relict mantle from Earth's birth. Nature, 2010, 466, 822-823.	27.8	1

#	Article	IF	CITATIONS
73	Unusually homogeneous helium isotope composition of the Auckland Volcanic Field and its implications for the underlying mantle. Chemical Geology, 2020, 545, 119639.	3.3	1

12.9 0