
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5941906/publications.pdf Version: 2024-02-01

MAD CAREZA

#	Article	IF	CITATIONS
1	Biocultural conflicts: understanding complex interconnections between a traditional ceremony and threatened carnivores in north Kenya. Oryx, 2023, 57, 435-444.	1.0	2
2	Typifying conservation practitionersâ \in $^{\mathrm{M}}$ views on the role of education. Conservation Biology, 2022, 36, .	4.7	6
3	Indigenous Storytelling and Climate Change Adaptation. , 2022, , 247-260.		0
4	The importance of Indigenous Territories for conserving bat diversity across the Amazon biome. Perspectives in Ecology and Conservation, 2021, 19, 10-20.	1.9	17
5	Global patterns of functional trait variation along aridity gradients in bats. Global Ecology and Biogeography, 2021, 30, 1014-1029.	5.8	16
6	Human-Bat Interactions in Rural Southwestern Madagascar through a Biocultural Lens. Journal of Ethnobiology, 2021, 41, 53-69.	2.1	9
7	Toward a holistic understanding of pastoralism. One Earth, 2021, 4, 651-665.	6.8	31
8	Convergences and divergences between scientific and Indigenous and Local Knowledge contribute to inform carnivore conservation. Ambio, 2021, 50, 990-1002.	5.5	19
9	Interactions between Climate Change and Infrastructure Projects in Changing Water Resources: An Ethnobiological Perspective from the Daasanach, Kenya. Journal of Ethnobiology, 2021, 41, 331-348.	2.1	12
10	Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications, 2021, 12, 7282.	12.8	14
11	A Stateâ€ofâ€theâ€Art Review of Indigenous Peoples and Environmental Pollution. Integrated Environmental Assessment and Management, 2020, 16, 324-341.	2.9	58
12	Historical shifts in local attitudes towards wildlife by Maasai pastoralists of the Amboseli Ecosystem (Kenya): Insights from three conservation psychology theories. Journal for Nature Conservation, 2020, 53, 125763.	1.8	17
13	Reframing the Wilderness Concept can Bolster Collaborative Conservation. Trends in Ecology and Evolution, 2020, 35, 750-753.	8.7	29
14	Assessing the effectiveness of a national protected area network for carnivore conservation. Nature Communications, 2020, 11, 2957.	12.8	30
15	Operationalizing Local Ecological Knowledge in Climate Change Research: Challenges and Opportunities of Citizen Science. Ethnobiology, 2020, , 183-197.	0.4	5
16	Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Regional Environmental Change, 2019, 19, 251-266.	2.9	26
17	Movement seasonality in a desert-dwelling bat revealed by miniature GPS loggers. Movement Ecology, 2019, 7, 27.	2.8	15
18	What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in Madagascar. Conservation Science and Practice, 2019, 1, e107.	2.0	14

#	Article	IF	CITATIONS
19	Gold is not green: artisanal gold mining threatens Ranomafana National Park's biodiversity. Animal Conservation, 2019, 22, 417-419.	2.9	17
20	Managers' perceptions of protected area outcomes in Madagascar highlight the need for species monitoring and knowledge transfer. Conservation Science and Practice, 2019, 1, e6.	2.0	3
21	Seasonal interactive effects of pCO ₂ and irradiance on the ecophysiology of brown macroalga <i>Fucus vesiculosus</i> L. European Journal of Phycology, 2019, 54, 380-392.	2.0	7
22	Last chance for Madagascar's biodiversity. Nature Sustainability, 2019, 2, 350-352.	23.7	30
23	Managers' perceptions of protected area outcomes in Madagascar highlight the need for species monitoring and knowledge transfer. Conservation Science and Practice, 2019, 1, e6.	2.0	4
24	Madagascar: Crime threatens biodiversity. Science, 2019, 363, 825-825.	12.6	23
25	Towards an applied metaecology. Perspectives in Ecology and Conservation, 2019, 17, 172-181.	1.9	30
26	Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agriculture, Ecosystems and Environment, 2019, 269, 88-96.	5.3	85
27	Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape. Scientific Reports, 2018, 8, 3819.	3.3	54
28	Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landscape Ecology, 2018, 33, 659-673.	4.2	34
29	Are sacred caves still safe havens for the endemic bats of Madagascar?. Oryx, 2018, 52, 271-275.	1.0	16
30	New law puts Bolivian biodiversity hotspot on road to deforestation. Current Biology, 2018, 28, R15-R16.	3.9	14
31	Rediscovering the Potential of Indigenous Storytelling for Conservation Practice. Conservation Letters, 2018, 11, e12398.	5.7	91
32	Matches and mismatches between conservation investments and biodiversity values in the European Union. Conservation Biology, 2018, 32, 109-115.	4.7	18
33	Revisiting niche fundamentals with Tukey depth. Methods in Ecology and Evolution, 2018, 9, 2349-2361.	5.2	8
34	An empirically tested overlap between indigenous and scientific knowledge of a changing climate in Bolivian Amazonia. Regional Environmental Change, 2017, 17, 1673-1685.	2.9	38
35	Insular bats and research effort: a review of global patterns and priorities. Mammal Review, 2017, 47, 169-182.	4.8	53
36	Climate change can cause complex responses in Baltic Sea macroalgae: A systematic review. Journal of Sea Research, 2017, 123, 16-29.	1.6	50

#	Article	IF	CITATIONS
37	Quality of governance and effectiveness of protected areas: crucial concepts for conservation planning. Annals of the New York Academy of Sciences, 2017, 1399, 27-41.	3.8	70
38	Synergistic effects of extreme temperature and low salinity on foundational macroalga Fucus vesiculosus in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 2017, 495, 110-118.	1.5	32
39	Design matters: An evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. Forest Ecology and Management, 2017, 401, 8-16.	3.2	30
40	Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. Ambio, 2017, 46, 277-290.	5.5	12
41	Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landscape Ecology, 2017, 32, 31-45.	4.2	90
42	Metapopulation perspective to institutional fit: maintenance of dynamic habitat networks. Ecology and Society, 2017, 22, .	2.3	5
43	The role of protected areas in supporting human health: a call to broaden the assessment of conservation outcomes. Current Opinion in Environmental Sustainability, 2017, 25, 50-58.	6.3	31
44	Local perceptions as a guide for the sustainable management of natural resources: empirical evidence from a small-scale society in Bolivian Amazonia. Ecology and Society, 2016, 21, .	2.3	45
45	Global metaâ€analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Global Ecology and Biogeography, 2016, 25, 596-606.	5.8	94
46	Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biological Conservation, 2016, 198, 193-201.	4.1	94
47	Contrasting spatial and temporal trends of protected area effectiveness in mitigating deforestation in Madagascar. Biological Conservation, 2016, 203, 290-297.	4.1	57
48	Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 2016, 25, 65-74.	5.8	19
49	Bird Assemblages in a Malagasy Forest-Agricultural Frontier: Effects of Habitat Structure and Forest Cover. Tropical Conservation Science, 2015, 8, 681-710.	1.2	20
50	Future changes in the supply of goods and services from natural ecosystems: prospects for the European north. Ecology and Society, 2015, 20, .	2.3	19
51	European policy responses to climate change: progress on mainstreaming emissions reduction and adaptation. Regional Environmental Change, 2015, 15, 949-959.	2.9	17
52	Rapid ecosystem change challenges the adaptive capacity of Local Environmental Knowledge. Global Environmental Change, 2015, 31, 272-284.	7.8	124
53	Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds. GCB Bioenergy, 2015, 7, 741-751.	5.6	12
54	Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Regional Environmental Change, 2015, 15, 961-971.	2.9	12

#	Article	IF	CITATIONS
55	How climate proof is the European Union's biodiversity policy?. Regional Environmental Change, 2015, 15, 997-1010.	2.9	15
56	Biodiversity Funds and Conservation Needs in the EU Under Climate Change. Conservation Letters, 2014, 7, 390-400.	5.7	26
57	Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 2014, 20, 674-685.	4.1	67
58	Matching species traits to projected threats and opportunities from climate change. Journal of Biogeography, 2014, 41, 724-735.	3.0	72
59	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	12.6	519
60	Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity and Distributions, 2014, 20, 309-321.	4.1	92
61	Breeding biology and reproductive success of the Spectacled Tetraka <i>Xanthomixis zosterops</i> (Bernieridae) in a rainforest of Madagascar. Ostrich, 2014, 85, 119-123.	1.1	2
62	Risk assessment for Iberian birds under global change. Biological Conservation, 2013, 168, 192-200.	4.1	32
63	Knowledge gaps in protected area effectiveness. Animal Conservation, 2013, 16, 381-382.	2.9	13
64	Conservation Planning with Uncertain Climate Change Projections. PLoS ONE, 2013, 8, e53315.	2.5	127
65	Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biology, 2012, 18, 1253-1269.	9.5	136
66	Linking like with like: optimising connectivity between environmentally-similar habitats. Landscape Ecology, 2012, 27, 291-301.	4.2	66
67	Ecological–economic optimization of biodiversity conservation under climate change. Nature Climate Change, 2011, 1, 355-359.	18.8	85
68	A probability-based approach to match species with reserves when data are at different resolutions. Biological Conservation, 2011, 144, 811-820.	4.1	32
69	Misleading results from conventional gap analysis – Messages from the warming north. Biological Conservation, 2011, 144, 2450-2458.	4.1	36
70	The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds. PLoS ONE, 2011, 6, e29373.	2.5	46
71	Climate change threatens European conservation areas. Ecology Letters, 2011, 14, 484-492.	6.4	660
72	Governance factors in the identification of global conservation priorities for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2661-2669.	4.0	59

#	Article	IF	CITATIONS
73	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	4.0	16
74	Costs of Integrating Economics and Conservation Planning. Conservation Biology, 2010, 24, 1198-1204.	4.7	48
75	Conservation planning with insects at three different spatial scales. Ecography, 2010, 33, 54-63.	4.5	50
76	Species specific connectivity in reserve-network design using graphs. Biological Conservation, 2010, 143, 408-415.	4.1	36
77	Assessing replacement cost of conservation areas: How does habitat loss influence priorities?. Biological Conservation, 2009, 142, 575-585.	4.1	43
78	Top predators: hot or not? A call for systematic assessment of biodiversity surrogates. Journal of Applied Ecology, 2008, 45, 976-980.	4.0	56
79	Maximizing conservation benefit for grassland species with contrasting management requirements. Journal of Applied Ecology, 2008, 45, 1401-1409.	4.0	22
80	Narrowing the gap between conservation planning science and practice?. Trends in Ecology and Evolution, 2008, 23, 358-359.	8.7	2
81	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	2.7	966
82	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.7	10
83	Conservation planning in a changing world. Trends in Ecology and Evolution, 2007, 22, 583-592.	8.7	842
84	Accounting for habitat loss rates in sequential reserve selection: Simple methods for large problems. Biological Conservation, 2007, 136, 470-482.	4.1	28
85	Within-site habitat configuration in reserve design: A case study with a peatland bird. Biological Conservation, 2006, 128, 55-66.	4.1	12
86	Replacement cost: A practical measure of site value for cost-effective reserve planning. Biological Conservation, 2006, 132, 336-342.	4.1	72
87	Connectivity, Probabilities and Persistence: Comparing Reserve Selection Strategies. Biodiversity and Conservation, 2006, 15, 899-919.	2.6	61
88	Variance and Uncertainty in the Expected Number of Occurrences in Reserve Selection. Conservation Biology, 2005, 19, 1663-1667.	4.7	6
89	Extending the Benefits of Attending a Conference Abroad. Conservation Biology, 2005, 19, 1683-1683.	4.7	0
90	Metapopulation Dynamics and Reserve Network Design. , 2004, , 541-564.		13

#	Article	IF	CITATIONS
91	Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, 2004, 10, 1618-1626.	9.5	606
92	Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 2004, 41, 252-262.	4.0	175
93	Site-Selection Algorithms and Habitat Loss. Conservation Biology, 2003, 17, 1402-1413.	4.7	103
94	Habitat loss and connectivity of reserve networks in probability approaches to reserve design. Ecology Letters, 2003, 6, 665-672.	6.4	96
95	SINGLE-SPECIES DYNAMIC SITE SELECTION. , 2002, 12, 913-926.		98
96	Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution, 2001, 16, 242-248.	8.7	386