Gracjan Michlewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5941534/publications.pdf

Version: 2024-02-01

37 papers 3,356 citations

230014 27 h-index 355658 38 g-index

42 all docs 42 docs citations

times ranked

42

5600 citing authors

#	Article	IF	CITATIONS
1	Post-transcriptional control of miRNA biogenesis. Rna, 2019, 25, 1-16.	1.6	390
2	Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops. Molecular Cell, 2008, 32, 383-393.	4.5	316
3	Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nature Structural and Molecular Biology, 2010, 17, 1011-1018.	3.6	241
4	The Splicing Factor SF2/ASF Regulates Translation Initiation by Enhancing Phosphorylation of 4E-BP1. Molecular Cell, 2008, 30, 179-189.	4.5	233
5	DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nature Structural and Molecular Biology, 2012, 19, 760-766.	3.6	200
6	RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Research, 2003, 31, 5469-5482.	6.5	191
7	Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO Journal, 2009, 28, 3145-3156.	3.5	161
8	Regulation of pri-miRNA Processing by a Long Noncoding RNA Transcribed from an Ultraconserved Region. Molecular Cell, 2014, 55, 138-147.	4.5	137
9	System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 2019, 74, 196-211.e11.	4.5	137
10	Tissue-specific control of brain-enriched miR-7 biogenesis. Genes and Development, 2013, 27, 24-38.	2.7	131
11	RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biology, 2017, 15, 105.	1.7	125
12	Structural Diversity of Triplet Repeat RNAs. Journal of Biological Chemistry, 2010, 285, 12755-12764.	1.6	110
13	Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nature Communications, 2019, 10, 2550.	5.8	81
14	Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation. Cell Reports, 2014, 9, 1265-1272.	2.9	80
15	Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nature Communications, 2018, 9, 2479.	5.8	80
16	miRNAs in development and pathogenesis of the nervous system. Biochemical Society Transactions, 2013, 41, 815-820.	1.6	76
17	Molecular Architecture of CAG Repeats in Human Disease Related Transcripts. Journal of Molecular Biology, 2004, 340, 665-679.	2.0	72
18	Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Research, 2003, 31, 5463-5468.	6.5	71

#	Article	IF	CITATIONS
19	Lin28a regulates neuronal differentiation and controls miR-9 production. Nature Communications, 2014, 5, 3687.	5.8	57
20	An Aptamer Targeting the Apicalâ€Loop Domain Modulates priâ€miRNA Processing. Angewandte Chemie - International Edition, 2010, 49, 4674-4677.	7.2	49
21	RNase-assisted RNA chromatography. Rna, 2010, 16, 1673-1678.	1.6	44
22	The role of Trim25 in development, disease and RNA metabolism. Biochemical Society Transactions, 2016, 44, 1045-1050.	1.6	40
23	Stimulation of pri-miR-18a Processing by hnRNP A1. Advances in Experimental Medicine and Biology, 2010, 700, 28-35.	0.8	38
24	PaperClip: rapid multi-part DNA assembly from existing libraries. Nucleic Acids Research, 2014, 42, e154-e154.	6.5	38
25	TRIM25 and its emerging RNAâ€binding roles in antiviral defense. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1588.	3.2	37
26	Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively. Rna, 2017, 23, 317-332.	1.6	36
27	Terminal loop-mediated control of microRNA biogenesis. Biochemical Society Transactions, 2012, 40, 789-793.	1.6	30
28	Hormonal Regulation of MicroRNA Biogenesis. Molecular Cell, 2009, 36, 172-173.	4.5	28
29	Posttranscriptional Regulation of 14q32 MicroRNAs by the CIRBP and HADHB during Vascular Regeneration after Ischemia. Molecular Therapy - Nucleic Acids, 2019, 14, 329-338.	2.3	24
30	RNA-Targeted Therapies and High-Throughput Screening Methods. International Journal of Molecular Sciences, 2020, 21, 2996.	1.8	24
31	Oleic Acid Induces MiR-7 Processing through Remodeling of Pri-MiR-7/Protein Complex. Journal of Molecular Biology, 2017, 429, 1638-1649.	2.0	19
32	Quantitative identification of proteins that influence miRNA biogenesis by RNA pull-down–SILAC mass spectrometry (RP–SMS). Methods, 2019, 152, 12-17.	1.9	11
33	TRIM25 inhibits influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I pathway. Nucleic Acids Research, 2022, 50, 7097-7114.	6.5	11
34	Trinucleotide repeat system for sequence specificity analysis of RNA structure probing reagents. Analytical Biochemistry, 2010, 402, 40-46.	1.1	8
35	Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection. Nucleic Acids Research, 2017, 45, e89-e89.	6.5	8
36	Pathogenesis of spinocerebellar ataxias viewed from the RNA perspective. Cerebellum, 2005, 4, 19-24.	1.4	7

#	Article	IF	CITATIONS
37	RNA pull-down confocal nanoscanning (RP-CONA) detects quercetin as pri-miR-7/HuR interaction inhibitor that decreases α-synuclein levels. Nucleic Acids Research, 2021, 49, 6456-6473.	6.5	7