Jacqueline Marvel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/594121/publications.pdf

Version: 2024-02-01

71102 66911 6,842 125 41 78 citations h-index g-index papers 132 132 132 11203 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1+ T cell development. Cellular and Molecular Immunology, 2021, 18, 2140-2152.	10.5	12
2	The Inflammasome Adaptor ASC Delays UV-Induced Skin Tumorigenesis in Beta HPV38 E6 and E7 Transgenic Mice. Journal of Investigative Dermatology, 2021, 141, 236-238.e2.	0.7	0
3	Calcium channel ITPR2 and mitochondria–ER contacts promote cellular senescence and aging. Nature Communications, 2021, 12, 720.	12.8	75
4	PLA2R1 promotes DNA damage and inhibits spontaneous tumor formation during aging. Cell Death and Disease, 2021, 12, 190.	6.3	10
5	Polyclonal expansion of TCR \hat{V}^2 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	11.9	105
6	Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. In Silico Biology, 2021, 14, 13-39.	0.9	0
7	OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza. Frontiers in Immunology, 2021, 12, 678483.	4.8	14
8	Specific detection of memory Tâ€cells in COVIDâ€19 patients using standardized wholeâ€blood Interferon gammarelease assay. European Journal of Immunology, 2021, 51, 3239-3242.	2.9	8
9	Immunogenicity and efficacy of         heterologous ChAdOx1–BNT162b2 vaccina 701-706.	tion Natuu 27.8	re, <u>202</u> 1, 60 <mark>0</mark> ,
10	OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. Npj Vaccines, 2019, 4, 4.	6.0	25
11	Model-Based Assessment of the Role of Uneven Partitioning of Molecular Content on Heterogeneity and Regulation of Differentiation in CD8 T-Cell Immune Responses. Frontiers in Immunology, 2019, 10, 230.	4.8	9
12	Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection. Journal of Immunology, 2018, 200, 3635-3646.	0.8	22
13	Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Scientific Reports, 2018, 8, 474.	3.3	63
14	Labeling of native proteins with fluorescent RAFT polymer probes: application to the detection of a cell surface protein using flow cytometry. Polymer Chemistry, 2018, 9, 1857-1868.	3.9	15
15	Human Naive and Memory T Cells Display Opposite Migratory Responses to Sphingosine-1 Phosphate. Journal of Immunology, 2018, 200, 551-557.	0.8	23
16	MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10404-10409.	7.1	14
17	Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell, 2018, 17, e12835.	6.7	31
18	Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny. Cell Systems, 2017, 4, 306-317.e4.	6.2	36

#	Article	IF	CITATIONS
19	Two-Photon Photosensitizer–Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. Biomacromolecules, 2017, 18, 4022-4033.	5.4	15
20	Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery. Molecular Therapy - Oncolytics, 2016, 3, 16033.	4.4	12
21	Immune signatures of protective spleen memory CD8 T cells. Scientific Reports, 2016, 6, 37651.	3.3	15
22	Fluorescent gold nanoparticles with chain-end grafted RAFT copolymers: influence of the polymer molecular weight and type of chromophore. Polymer Chemistry, 2016, 7, 6812-6825.	3.9	8
23	IL-2 sensitivity and exogenous IL-2 concentration gradient tune the productive contact duration of CD8+ T cell-APC: a multiscale modeling study. BMC Systems Biology, 2016, 10, 77.	3.0	20
24	TGF- \hat{l}^2 inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19.	3.6	453
25	Overexpression of the Transcription Factor Sp1 Activates the OAS-RNAse L-RIG-I Pathway. PLoS ONE, 2015, 10, e0118551.	2.5	18
26	Predicting pathogen-specific CD8 T cell immune responses from a modeling approach. Journal of Theoretical Biology, 2015, 374, 66-82.	1.7	13
27	Dual Impact of Live Staphylococcus aureus on the Osteoclast Lineage, Leading to Increased Bone Resorption. Journal of Infectious Diseases, 2015, 211, 571-581.	4.0	79
28	Human natural killer cells promote crossâ€presentation of tumor cellâ€derived antigens by dendritic cells. International Journal of Cancer, 2015, 136, 1085-1094.	5.1	55
29	Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study. Computation, 2014, 2, 159-181.	2.0	29
30	T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. Journal of Experimental Medicine, 2014, 211, 563-577.	8.5	462
31	Nanocarriers with ultrahigh chromophore loading for fluorescence bio-imaging and photodynamic therapy. Biomaterials, 2013, 34, 8344-8351.	11.4	58
32	Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics, 2013, 5, 1470.	2.4	111
33	Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment. Cancer Research, 2013, 73, 4629-4640.	0.9	164
34	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
35	Generation of transgenic mice expressing EGFP protein fused to NP68 MHC class I epitope using lentivirus vectors. Genesis, 2013, 51, 193-200.	1.6	5
36	Biocompatible well-defined chromophore–polymer conjugates for photodynamic therapy and two-photon imaging. Polymer Chemistry, 2013, 4, 61-67.	3.9	38

#	Article	IF	CITATIONS
37	TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828.	10.3	99
38	Regulation of Mouse NK Cell Development and Function by Cytokines. Frontiers in Immunology, 2013, 4, 450.	4.8	155
39	ASC Controls IFN-γ Levels in an IL-18–Dependent Manner in Caspase-1–Deficient Mice Infected with Francisella novicida. Journal of Immunology, 2013, 191, 3847-3857.	0.8	31
40	S1PR5 is pivotal for the homeostasis of patrolling monocytes. European Journal of Immunology, 2013, 43, 1667-1675.	2.9	49
41	Water-soluble chromophores with star-shaped oligomeric arms: synthesis, spectroscopic studies and first results in bio-imaging and cell death induction. New Journal of Chemistry, 2012, 36, 2328.	2.8	22
42	Negative Regulation of NKG2D Expression by IL-4 in Memory CD8 T Cells. Journal of Immunology, 2012, 189, 3480-3489.	0.8	27
43	Development of antigen cross-presentation capacity in dendritic cells. Trends in Immunology, 2012, 33, 381-388.	6.8	60
44	Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology, 2012, 23, 465602.	2.6	58
45	T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production. Immunologic Research, 2012, 52, 284-293.	2.9	21
46	Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system. Journal of Mathematical Biology, 2012, 65, 263-291.	1.9	11
47	NOD1 Cooperates with TLR2 to Enhance T Cell Receptor-Mediated Activation in CD8 T Cells. PLoS ONE, 2012, 7, e42170.	2.5	33
48	Photodynamic therapy and two-photon bio-imaging applications of hydrophobic chromophores through amphiphilic polymer delivery. Photochemical and Photobiological Sciences, 2011, 10, 1216-1225.	2.9	74
49	High-throughput mouse phenotyping. Methods, 2011, 53, 394-404.	3.8	31
50	Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood, 2011, 118, 4863-4871.	1.4	119
51	CpG Promotes Cross-Presentation of Dead Cell-Associated Antigens by Pre-CD8α+ Dendritic Cells. Journal of Immunology, 2011, 186, 1503-1511.	0.8	50
52	CD137 in NK cells. Blood, 2010, 115, 2987-2988.	1.4	11
53	The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8 $\hat{1}$ ±+ dendritic cells. Journal of Experimental Medicine, 2010, 207, 1283-1292.	8.5	558
54	EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 2010, 38, D577-D585.	14.5	75

#	Article	IF	CITATIONS
55	Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition. PLoS ONE, 2009, 4, e7035.	2.5	79
56	TLR2 Engagement on CD8 T Cells Enables Generation of Functional Memory Cells in Response to a Suboptimal TCR Signal. Journal of Immunology, 2009, 182, 1860-1867.	0.8	90
57	Characterization of a CD44/CD122int Memory CD8 T Cell Subset Generated under Sterile Inflammatory Conditions. Journal of Immunology, 2009, 182, 3846-3854.	0.8	29
58	TLR2 engagement on memory CD8 ⁺ T cells improves their cytokineâ€mediated proliferation and IFNâ€Î³ secretion in the absence of Ag. European Journal of Immunology, 2009, 39, 2673-2681.	2.9	63
59	Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation. European Journal of Immunology, 2008, 38, 2076-2084.	2.9	51
60	Loss of p53 or p73 in human papillomavirus type 38 E6 and E7 transgenic mice partially restores the UV-activated cell cycle checkpoints. Oncogene, 2008, 27, 2923-2928.	5.9	18
61	Overexpression of Sp1 transcription factor induces apoptosis. Oncogene, 2006, 25, 7096-7105.	5.9	83
62	TLR2 engagement on CD8 T cells lowers the thresholdfor optimal antigen-induced T cell activation. European Journal of Immunology, 2006, 36, 1684-1693.	2.9	172
63	Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability. European Journal of Immunology, 2006, 36, 2745-2754.	2.9	21
64	Cell-Autonomous CCL5 Transcription by Memory CD8 T Cells Is Regulated by IL-4. Journal of Immunology, 2006, 177, 4451-4457.	0.8	20
65	Flt3 Ligand-Generated Murine Plasmacytoid and Conventional Dendritic Cells Differ in Their Capacity to Prime Naive CD8 T Cells and to Generate Memory Cells In Vivo. Journal of Immunology, 2005, 175, 189-195.	0.8	37
66	Identification of Apoptosis Regulatory Genes Using Insertional Mutagenesis., 2004, 282, 275-290.		0
67	Restriction of De Novo Nucleotide Biosynthesis Interferes with Clonal Expansion and Differentiation into Effector and Memory CD8 T Cells. Journal of Immunology, 2004, 173, 4945-4952.	0.8	38
68	Control of proliferation by Bcl-2 family members. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 159-168.	4.1	68
69	Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology, 2003, 42, 1-11.	1.6	42
70	A1/Bfl-1 expression is restricted to TCR engagement in T lymphocytes. Cell Death and Differentiation, 2003, 10, 1059-1067.	11,2	42
71	Cutting Edge: Immediate RANTES Secretion by Resting Memory CD8 T Cells Following Antigenic Stimulation. Journal of Immunology, 2003, 170, 1615-1619.	0.8	48
72	In Vivo Impact of CpG1826 Oligodeoxynucleotide on CD8 T Cell Primary Responses and Survival. Journal of Immunology, 2003, 171, 2995-3002.	0.8	23

#	Article	IF	Citations
73	Hyperproliferative Response of a Monoclonal Memory CD8 T Cell Population Is Characterized by an Increased Frequency of Clonogenic Precursors. Journal of Immunology, 2002, 168, 2147-2153.	0.8	5
74	Differential In Vivo Persistence of Two Subsets of Memory Phenotype CD8 T Cells Defined by CD44 and CD122 Expression Levels. Journal of Immunology, 2002, 168, 2704-2711.	0.8	36
75	Decreased glycolytic metabolism contributes to but is not the inducer of apoptosis following IL-3-starvation. Cell Death and Differentiation, 2002, 9, 1147-1157.	11.2	33
76	PhÃ@notype et fonctions des lymphocytes T CD8+mÃ@moire. Medecine/Sciences, 2001, 17, 1105-1111.	0.2	1
77	Characterization of Vero cell growth and death in bioreactor with serum-containing and serum-free media. Cytotechnology, 2001, 35, 115-125.	1.6	24
78	Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nature Immunology, 2001, 2, 430-435.	14.5	153
79	Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Protects against Interleukin-3 Starvation but Not DNA Damage-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 10935-10942.	3.4	28
80	Monitoring Growth and Death of Vero Cells Cultivated in Bioreactor with Serum-Containing and Serum-Free Media., 2001,, 213-216.		0
81	Characterization at the Single-Cell Level of Naive and Primed CD8 T Cell Cytokine Responses. Cellular Immunology, 2000, 206, 16-25.	3.0	8
82	Effects of $T3R\hat{l}\pm 1$ and $T3R\hat{l}\pm 2$ Gene Deletion on T and B Lymphocyte Development. Journal of Immunology, 2000, 164, 152-160.	0.8	68
83	Death by neglect as a deletional mechanism of peripheral tolerance. International Immunology, 1999, 11, 1225-1238.	4.0	83
84	Memory CD44int CD8 T cells show increased proliferative responses and IFN- \hat{l}^3 production following antigenic challenge in vitro. International Immunology, 1999, 11, 699-706.	4.0	30
85	Role of PI3-kinase in Bcl-X induction and apoptosis inhibition mediated by IL-3 or IGF-1 in Baf-3 cells. Cell Death and Differentiation, 1999, 6, 290-296.	11.2	87
86	Bcl-X is the major pleiotropic anti-apoptotic gene activated by retroviral insertion mutagenesis in an IL-3 dependent bone marrow derived cell line. Oncogene, 1998, 16, 1399-1408.	5.9	27
87	Tolerant CD8 T cells induced by multiple injections of peptide antigen show impaired TCR signaling and altered proliferative responses in vitro and in vivo. Journal of Immunology, 1998, 161, 5260-7.	0.8	35
88	In bone marrow derived Baf-3 cells, inhibition of apoptosis by IL-3 is mediated by two independent pathways. Oncogene, 1997, 14, 425-430.	5.9	64
89	Altered methional homoeostasis is associated with decreased apoptosis in BAF3 bcl2 murine lymphoid cells. Biochemical Journal, 1996, 313, 973-981.	3.7	13
90	Resting Memory CD8+ T Cells are Hyperreactive to Antigenic Challenge In Vitro. Journal of Experimental Medicine, 1996, 184, 2141-2152.	8.5	220

#	Article	IF	Citations
91	The product of the v-src-inducible gene nr-13 is a potent anti-apoptotic factor. Oncogene, 1996, 13, 1441-6.	5.9	17
92	Expressionin vivo of CD45RA, CD45RB and CD44 on T cell receptor-transgenic CD8+ T cells following immunization. European Journal of Immunology, 1995, 25, 1755-1759.	2.9	20
93	Dominant interfering alleles define a role for c-Myb in T-cell development Genes and Development, 1994, 8, 770-782.	5.9	166
94	Interleukin-3 and Bcl-2 cooperatively inhibit etoposide-induced apoptosis in a murine pre-B cell line. European Journal of Immunology, 1994, 24, 537-541.	2.9	20
95	Growth factor starvation of bcl-2 overexpressing murine bone marrow cells induced refractoriness to IL-3 stimulation of proliferation. Oncogene, 1994, 9, 1117-22.	5.9	52
96	Hyper-reactivity of mouse CD45RAâ^' T cells. European Journal of Immunology, 1993, 23, 2383-2386.	2.9	11
97	Bcl-2 Oncogene Protects a Bone Marrow-Derived Pre-B Cell Line from 5′-Fluor,2′-deoxyuridine-Induced Apoptosis. Biochemical and Biophysical Research Communications, 1993, 194, 126-132.	2.1	27
98	Interleukin 2 activates extracellular signal-regulated protein kinase 2 Journal of Experimental Medicine, 1993, 178, 1429-1434.	8.5	42
99	Role of CD4+CD45RA+ T cells in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. International Immunology, 1993, 5, 479-489.	4.0	23
100	CD45RA+ T Cells: Not Simple Virgins. Clinical Science, 1993, 85, 515-519.	4.3	14
101	Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents Journal of Experimental Medicine, 1992, 176, 1043-1051.	8.5	225
102	Memory in helper T cells of minor histocompatibility antigens, revealedin vivo by alloimmunizations in combination with Thy-1 antigen. European Journal of Immunology, 1992, 22, 115-122.	2.9	19
103	Evidence that the CD45 phosphatase regulates the activity of the phospholipase C in mouse T lymphocytes. European Journal of Immunology, 1991, 21, 195-201.	2.9	17
104	In the mouse the maturation stage of the peripheral CD4+ CD45RA+ subset is different from that of the CD8+ CD45RA+ subset. European Journal of Immunology, 1991, 21, 2161-2165.	2.9	11
105	The CD45RA molecule is expressed in naive murine CTL precursors but absent in memory and effector CTL. International Immunology, 1991, 3, 21-28.	4.0	13
106	CD45RA antibodies split the CD3bright T cell subset. International Immunology, 1991, 3, 917-922.	4.0	8
107	Some Thoughts on the Future of Idiotypic Vaccines. Progress in Vaccinology, 1991, , 1-7.	0.7	3
108	Expression of CD45 on T-cell populations. Trends in Immunology, 1990, 11, 432.	7.5	0

#	Article	IF	CITATIONS
109	CD45RA is detected in all thymocyte subsets defined by CD4 and CD8 by using three-colour flow cytometry. Immunology, 1990, 71, 467-72.	4.4	12
110	Anti-cd45ra antibodies increase the proliferation of mouse t cells to phytohemagglutinin through the interleukin 2/interleukin 2 receptor pathway. European Journal of Immunology, 1989, 19, 2005-2010.	2.9	22
111	Problems in the Physiology of Class I and Class II MHC Molecules, and of CD45. Cold Spring Harbor Symposia on Quantitative Biology, 1989, 54, 667-674.	1.1	10
112	CD45R gives immunofluorescence and transduces signals on mouse T cells. European Journal of Immunology, 1988, 18, 825-828.	2.9	27
113	Some aspects of idiotypic networks: Self/non-self discrimination, selection of available repertoires and broken mirrors. Annales De L'Institut Pasteur Immunologie, 1988, 139, 609-618.	0.8	3
114	The influence of $\hat{V^p}$ gene polymorphism on the induction of silent idiotypes in the arsonate system. Molecular Immunology, 1987, 24, 463-469.	2.2	4
115	Progress in T cell biology. Immunology Letters, 1987, 16, 171-177.	2.5	8
116	Idiotype-Anti-Idiotype Interactions of VHIX-Coded Anti-Progesterone and Anti-Arsonate Antibodies Scandinavian Journal of Immunology, 1987, 26, 267-276.	2.7	4
117	The split within the CD4 (helper) T-cell subset, and its implications for immunopathology. Memorias Do Instituto Oswaldo Cruz, 1987, 82, 260-273.	1.6	3
118	Idiotypic Games within the Immune Network. Immunological Reviews, 1986, 90, 73-92.	6.0	15
119	FROM IDIOTYPES TO IDIOTYPIC NETWORKS., 1986, , 111-138.		0
120	Molecular mapping of idiotopes of anti-arsonate antibodies. Journal of Immunology, 1986, 136, 2568-74.	0.8	27
121	Study of idiotopic suppression induced by anti-cross-reactive idiotype monoclonal antibody in the anti-p-azophenylarsonate antibody response. Journal of Immunology, 1986, 136, 1960-7.	0.8	10
122	The Idiotypic Network: Order from the Beginning or Order out of Chaos?. Current Topics in Microbiology and Immunology, 1985, 119, 127-142.	1.1	7
123	Idiotypic analysis of polyclonal and monoclonal anti-p-azophenylarsonate antibodies of BALB/c mice expressing the major cross-reactive idiotype of the A/J strain. Journal of Immunology, 1985, 134, 1734-9.	0.8	34
124	Idiotypic analysis of potential and available repertoires in the arsonate system Journal of Experimental Medicine, 1984, 160, 1-11.	8.5	35
125	ldiotypic manipulations in the arsonate system. Annales De L'Institut Pasteur Immunologie, 1984, 135, 45-50.	0.8	2