
Zhengtao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5940846/publications.pdf Version: 2024-02-01

ZHENCTAO XII

#	Article	IF	CITATIONS
1	Waterâ€assisted sintering of silica: Densification mechanisms and their possible implications in biomineralization. Journal of the American Ceramic Society, 2022, 105, 2945-2954.	3.8	8
2	A facile approach for hierarchical architectures of an enzyme–metal–organic framework biocatalyst with high activity and stability. Nanoscale, 2022, 14, 3929-3934.	5.6	7
3	Dense Dithiolene Units on Metal–Organic Frameworks for Mercury Removal and Superprotonic Conduction. ACS Applied Materials & Interfaces, 2022, 14, 1070-1076.	8.0	17
4	Mineral Hydrogel from Inorganic Salts: Biocompatible Synthesis, Allâ€inâ€One Charge Storage, and Possible Implications in the Origin of Life. Advanced Functional Materials, 2022, 32, .	14.9	14
5	Enhancement of Protein Crystallization Using Nano-Sized Metal–Organic Framework. Crystals, 2022, 12, 578.	2.2	1
6	Telltale diamagnetism at 50 K of a coordination polymer system. Materials Research Letters, 2022, 10, 496-500.	8.7	2
7	Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy and Environmental Science, 2022, 15, 2601-2609.	30.8	22
8	Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 7473-7478.	5.1	10
9	Superprotonic conduction of intrinsically zwitterionic microporous polymers based on easy-to-make squaraine, croconaine and rhodizaine dyes. Nanoscale Advances, 2022, 4, 2922-2928.	4.6	6
10	Coordinationâ€Ðriven Assembly of Metal–Organic Framework Coating for Catalytically Active Superhydrophobic Surface. Advanced Materials Interfaces, 2021, 8, 2001202.	3.7	21
11	Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Applied Catalysis B: Environmental, 2021, 284, 119750.	20.2	35
12	Conjugated crosslinks boost the conductivity and stability of a single crystalline metal–organic framework. Chemical Communications, 2021, 57, 187-190.	4.1	10
13	Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni ₈ -Pyrazolate Network. Inorganic Chemistry, 2021, 60, 161-166.	4.0	12
14	The Coordination Chemistry of Metal-Organic Frameworks: Metalation, Catalysis and Beyond. , 2021, , 99-117.		1
15	Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag ₃ Sb Nanodots. Inorganic Chemistry, 2021, 60, 5757-5763.	4.0	4
16	Uniting Form and Function, Stability and Reactivity in Open Framework Materials. Chemistry Letters, 2021, 50, 627-631.	1.3	4
17	Liquefaction-induced plasticity from entropy-boosted amorphous ceramics. Applied Materials Today, 2021, 23, 101011.	4.3	3
18	A Ferrocene Metal–Organic Framework Solid for Fe-Loaded Carbon Matrices and Nanotubes: High-Yield Synthesis and Oxygen Reduction Electrocatalysis. Inorganic Chemistry, 2021, 60, 17315-17324.	4.0	4

#	Article	IF	CITATIONS
19	Supervariate Ceramics: Gelatinous and Monolithic Ceramics Fabricated under Ambient Conditions. Advanced Engineering Materials, 2021, 23, .	3.5	2
20	Halogen–C ₂ H ₂ Binding in Ultramicroporous Metal–Organic Frameworks (MOFs) for Benchmark C ₂ H ₂ /CO ₂ Separation Selectivity. Chemistry - A European Journal, 2020, 26, 4923-4929.	3.3	72
21	Donor–acceptor covalent organic frameworks of nickel(<scp>ii</scp>) porphyrin for selective and efficient CO ₂ reduction into CO. Dalton Transactions, 2020, 49, 15587-15591.	3.3	26
22	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	31.5	258
23	Crystallinity after decarboxylation of a metal–carboxylate framework: indestructible porosity for catalysis. Dalton Transactions, 2020, 49, 11902-11910.	3.3	10
24	Porphyrin Grafting on a Mercapto-Equipped Zr(IV)-Carboxylate Framework Enhances Photocatalytic Hydrogen Production. Inorganic Chemistry, 2020, 59, 12643-12649.	4.0	18
25	Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical Society Reviews, 2020, 49, 3981-4042.	38.1	162
26	Solution-Based Comproportionation Reaction for Facile Synthesis of Black TiO ₂ Nanotubes and Nanoparticles. ACS Applied Energy Materials, 2020, 3, 6087-6092.	5.1	12
27	Building Conjugated Donor–Acceptor Cross-Links into Metal–Organic Frameworks for Photo- and Electroactivity. ACS Applied Materials & Interfaces, 2020, 12, 19201-19209.	8.0	9
28	Dense Alkyne Arrays of a Zr(IV) Metal–Organic Framework Absorb Co ₂ (CO) ₈ for Functionalization. Inorganic Chemistry, 2020, 59, 5626-5631.	4.0	18
29	An air-stable anionic two-dimensional semiconducting metal-thiolate network and its exfoliation into ultrathin few-layer nanosheets. Chemical Communications, 2020, 56, 3645-3648.	4.1	13
30	A Bumper Crop of Boiling-Water-Stable Metal–Organic Frameworks from Controlled Linker Sulfuration. Inorganic Chemistry, 2020, 59, 7097-7102.	4.0	12
31	Frontispiece: Sulfur Chemistry for Stable and Electroactive Metal-Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, .	3.3	4
32	A Porous and Solution-Processable Molecular Crystal Stable at 200 °C: The Surprising Donor–Acceptor Impact. Crystal Growth and Design, 2019, 19, 7411-7419.	3.0	2
33	In Situ Observations of Abnormal Pore Size Changes of a Zirconium Based Metal-Organic Framework Using Atomic Resolution S/TEM and EELS. Microscopy and Microanalysis, 2019, 25, 1486-1487.	0.4	1
34	Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.	5.5	68
35	Symmetrically backfolded molecules emulating the self-similar features of a Sierpinski triangle. Organic and Biomolecular Chemistry, 2019, 17, 6032-6037.	2.8	4
36	Sulfur Chemistry for Stable and Electroactive Metalâ€Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, 8654-8662.	3.3	13

#	Article	IF	CITATIONS
37	Janus triple tripods build up a microporous manifold for HgCl ₂ and I ₂ uptake. Chemical Communications, 2019, 55, 5091-5094.	4.1	9
38	Anchoring Co ^{II} Ions into a Thiol‣aced Metal–Organic Framework for Efficient Visible‣ightâ€Đriven Conversion of CO ₂ into CO. ChemSusChem, 2019, 12, 2166-2170.	6.8	58
39	A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. Inorganic Chemistry, 2019, 58, 1462-1468.	4.0	31
40	Photocatalytic cofactor regeneration involving triethanolamine revisited: The critical role of glycolaldehyde. Applied Catalysis B: Environmental, 2019, 243, 686-692.	20.2	36
41	Synthesis of a Thiol Building Block for the Crystallization of a Semiconducting Gyroidal Metal-sulfur Framework. Journal of Visualized Experiments, 2018, , .	0.3	0
42	Made in Water: A Stable Microporous Cu(I)-carboxylate Framework (CityU-7) for CO ₂ , Water, and Iodine Uptake. Inorganic Chemistry, 2018, 57, 4807-4811.	4.0	18
43	Improving stability against desolvation and mercury removal performance of Zr(<scp>iv</scp>)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A, 2018, 6, 1648-1654.	10.3	43
44	Metal-Organic Frameworks for Heavy Metal Removal. Series on Chemistry, Energy and the Environment, 2018, , 377-410.	0.3	0
45	Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. Inorganic Chemistry, 2018, 57, 6198-6201.	4.0	21
46	Dense thiol arrays for metal–organic frameworks: boiling water stability, Hg removal beyond 2 ppb and facile crosslinking. Journal of Materials Chemistry A, 2018, 6, 14566-14570.	10.3	52
47	Beadwork and Network: Strings of Silver Ions Stitch Large-ï€ Pyrazolate Patches into a Two-dimensional Sheet. Crystal Growth and Design, 2018, 18, 3713-3718.	3.0	7
48	Dramatic improvement of stability by <i>in situ</i> linker cyclization of a metal–organic framework. Chemical Communications, 2018, 54, 9470-9473.	4.1	19
49	Multiphaseâ€Assembly of Siloxane Oligomers with Improved Mechanical Strength and Waterâ€Enhanced Healing. Angewandte Chemie - International Edition, 2018, 57, 11242-11246.	13.8	129
50	Multiphaseâ€Assembly of Siloxane Oligomers with Improved Mechanical Strength and Waterâ€Enhanced Healing. Angewandte Chemie, 2018, 130, 11412-11416.	2.0	33
51	A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. Journal of Materials Chemistry A, 2017, 5, 16139-16143.	10.3	44
52	Mesoporous C-coated SnO _x nanosheets on copper foil as flexible and binder-free anodes for superior sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2243-2250.	10.3	33
53	A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis. Journal of Materials Chemistry A, 2017, 5, 20180-20187.	10.3	30
54	A Boilingâ€Waterâ€Stable, Tunable Whiteâ€Emitting Metal–Organic Framework from Softâ€Imprint Synthesis. Chemistry - A European Journal, 2016, 22, 1597-1601.	3.3	33

#	Article	IF	CITATIONS
55	Improving the Loading Capacity of Metal–Organic Framework Thin Films Using Optimized Linkers. ACS Applied Materials & Interfaces, 2016, 8, 24699-24702.	8.0	10
56	Complex Metal–Organic Frameworks from Symmetrically Backfolded Dendrimers. ChemistrySelect, 2016, 1, 4075-4081.	1.5	5
57	Metalation Triggers Single Crystalline Order in a Porous Solid. Journal of the American Chemical Society, 2016, 138, 14852-14855.	13.7	48
58	Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance. Nano Research, 2016, 9, 2364-2371.	10.4	12
59	Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes. Journal of Power Sources, 2016, 307, 634-640.	7.8	64
60	Bio-inspired stabilization of sulfenyl iodide RS-I in a Zr(<scp>iv</scp>)-based metal–organic framework. Dalton Transactions, 2016, 45, 5334-5338.	3.3	28
61	A minimalist fluorescent probe for differentiating Cys, Hcy and CSH in live cells. Chemical Science, 2016, 7, 256-260.	7.4	195
62	Facile synthesis of a conjugated microporous polymeric monolith via copper-free Sonogashira–Hagihara cross-coupling in water under aerobic conditions. Polymer Chemistry, 2015, 6, 7251-7255.	3.9	36
63	Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. Journal of Materials Chemistry A, 2015, 3, 3928-3934.	10.3	85
64	Room-temperature acetylene hydration by a Hg(<scp>ii</scp>)-laced metal–organic framework. Chemical Communications, 2015, 51, 10941-10944.	4.1	43
65	Highly Polarizable Triiodide Anions (I ₃ [–]) as Cross-Linkers for Coordination Polymers: Closing the Semiconductive Band Gap. Inorganic Chemistry, 2015, 54, 6087-6089.	4.0	14
66	In situ production of silver nanoparticles on an aldehyde-equipped conjugated porous polymer and subsequent heterogeneous reduction of aromatic nitro groups at room temperature. Chemical Communications, 2015, 51, 12197-12200.	4.1	45
67	Functional shakeup of metal–organic frameworks: the rise of the sidekick. CrystEngComm, 2015, 17, 9254-9263.	2.6	20
68	Pd Uptake and H ₂ S Sensing by an Amphoteric Metal–Organic Framework with a Soft Core and Rigid Side Arms. Angewandte Chemie - International Edition, 2014, 53, 14438-14442.	13.8	91
69	An electroactive porous network from covalent metal–dithiolene links. Chemical Communications, 2014, 50, 3986-3988.	4.1	166
70	Selective Ag(I) Binding, H ₂ S Sensing, and White-Light Emission from an Easy-to-Make Porous Conjugated Polymer. Journal of the American Chemical Society, 2014, 136, 2818-2824.	13.7	117
71	Immobilization of Volatile and Corrosive Iodine Monochloride (ICl) and I ₂ Reagents in a Stable Metal–Organic Framework. Inorganic Chemistry, 2014, 53, 6837-6843.	4.0	39
72	Convenient Detection of Pd(II) by a Metal–Organic Framework with Sulfur and Olefin Functions. Journal of the American Chemical Society, 2013, 135, 7807-7810.	13.7	113

#	Article	IF	CITATIONS
73	Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. Journal of the American Chemical Society, 2013, 135, 7795-7798.	13.7	492
74	White Light Emission and Second Harmonic Generation from Secondary Group Participation (SGP) in a Coordination Network. Journal of the American Chemical Society, 2012, 134, 1553-1559.	13.7	142
75	Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal–Organic Framework. Chemistry of Materials, 2011, 23, 2940-2947.	6.7	145
76	Semirigid Aromatic Sulfone–Carboxylate Molecule for Dynamic Coordination Networks: Multiple Substitutions of the Ancillary Ligands. Inorganic Chemistry, 2011, 50, 7142-7149.	4.0	20
77	Metal-based photonic coatings from electrochemical methods. , 2010, , .		0
78	Reactions of H ₂ S with AgCl within a Porous Coordination Network. Inorganic Chemistry, 2010, 49, 7629-7631.	4.0	25
79	Coordination Networks from Cu Cations and Tetrakis(methylthio)benzenedicarboxylic Acid: Tunable Bonding Patterns and Selective Sensing for NH ₃ Gas. Inorganic Chemistry, 2010, 49, 10191-10198.	4.0	23
80	Metal-Based Photonic Coatings from Electrochemical Deposition. Journal of the Electrochemical Society, 2009, 156, D508.	2.9	16
81	Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule. Journal of Solid State Chemistry, 2009, 182, 1821-1826.	2.9	54
82	Networks of Hexagonal Hierarchy from a Self-Similar Tritopic Molecule. Crystal Growth and Design, 2009, 9, 1663-1665.	3.0	16
83	Flexible Thioetherâ^'Ag(I) Interactions for Assembling Large Organic Ligands into Crystalline Networks. Crystal Growth and Design, 2009, 9, 1444-1451.	3.0	19
84	Shape-Selective Sorption and Fluorescence Sensing of Aromatics in a Flexible Network of Tetrakis[(4-methylthiophenyl)ethynyl]silane and AgBF ₄ . Chemistry of Materials, 2009, 21, 541-546.	6.7	47
85	Reversible uptake of HgCl2 in a porous coordination polymer based on the dual functions of carboxylate and thioether. Chemical Communications, 2009, , 5439.	4.1	91
86	Structural regularity and diversity in hybrids of aromatic thioethers and BiBr3: from discrete complexes to layers and 3D nets. Dalton Transactions, 2009, , 5083.	3.3	19
87	Mixed-Valence CullCul15I17 Cluster Builds up a 3D Metalâ^'Organic Framework with Paramagnetic and Thermochromic Characteristics. Inorganic Chemistry, 2008, 47, 7948-7950.	4.0	49
88	Coordination Networks from a Bifunctional Molecule Containing Carboxyl and Thioether Groups. Inorganic Chemistry, 2008, 47, 7459-7461.	4.0	45
89	CuCN Pillars Induce Face-to-Face π-Overlap of Anthracene-Based Thioether Molecules within a Hybrid Coordination Network. Crystal Growth and Design, 2008, 8, 1468-1470.	3.0	14
90	Multiple Bismuth(III)â^'Thioether Secondary Interactions Integrate Metalloporphyrin Ligands into Functional Networks. Inorganic Chemistry, 2007, 46, 4844-4849.	4.0	11

#	Article	IF	CITATIONS
91	Assembly of Large Aromatic Selenoether Ligands into Cubic and Non-interpenetrated (10, 3)- <i>a</i> Nets. Crystal Growth and Design, 2007, 7, 2542-2547.	3.0	15
92	Centripetal molecules as multifunctional building blocks for coordination networks. Chemical Communications, 2007, , 4779.	4.1	24
93	Three-Dimensional Nets from Star-Shaped Hexakis(arylthio)triphenylene Molecules and Silver(I) Salts. Inorganic Chemistry, 2006, 45, 1032-1037.	4.0	29
94	A selective review on the making of coordination networks with potential semiconductive properties. Coordination Chemistry Reviews, 2006, 250, 2745-2757.	18.8	92
95	Distinct host–guest interaction and subdued fluorescence in a coordination network of 2,3,6,7,10,11-hexakis(phenylthio)triphenylene and silver(l) triflate. Journal of Solid State Chemistry, 2006, 179, 3688-3694.	2.9	6
96	Small Amphiphilic Organics, Coordination Extended Solids, and Constant Curvature Structures. Accounts of Chemical Research, 2005, 38, 251-261.	15.6	66
97	Semiconductive Coordination Networks from Bismuth(III) Bromide and 1,2-Bis(methylthio)phenylacetylene-Based Ligands. Inorganic Chemistry, 2005, 44, 8855-8860.	4.0	25
98	Semiconductive Coordination Networks from 2,3,6,7,10,11-Hexakis(alkylthio)triphenylenes and Bismuth(III) Halides:Â Synthesis, Structureâ^'Property Relations, and Solution Processing. Chemistry of Materials, 2005, 17, 4426-4437.	6.7	40
99	A Semiconductive Coordination Network Based on 2,3,6,7,10,11-Hexakis(methylthio)triphenylene and BiCl3. Crystal Growth and Design, 2005, 5, 423-425.	3.0	17
100	Fluorescent Coordination Networks of 2,3,6,7,10,11-Hexakis(phenylthio)triphenylene and Silver(I) Triflate. Inorganic Chemistry, 2004, 43, 8018-8022.	4.0	15
101	[(CH3)3NCH2CH2NH3]Snl4:Â A Layered Perovskite with Quaternary/Primary Ammonium Dications and Short Interlayer Iodineâ~'lodine Contacts. Inorganic Chemistry, 2003, 42, 1400-1402.	4.0	67
102	SnI42–Based Hybrid Perovskites Templated by Multiple Organic Cations:Â Combining Organic Functionalities through Noncovalent Interactions. Chemistry of Materials, 2003, 15, 3632-3637.	6.7	75
103	Semiconducting Perovskites (2-XC6H4C2H4NH3)2Snl4(X = F, Cl, Br):Â Steric Interaction between the Organic and Inorganic Layers. Inorganic Chemistry, 2003, 42, 2031-2039.	4.0	104
104	[CH3(CH2)11NH3]SnI3:Â A Hybrid Semiconductor with MoO3-type Tin(II) lodide Layers. Inorganic Chemistry, 2003, 42, 6589-6591.	4.0	72
105	Structure Rationalization and Topology Prediction of Two-Distinct-Component Organic Crystals:Â The Role of Volume Fraction and Interface Topology. Journal of the American Chemical Society, 2002, 124, 121-135.	13.7	18
106	Hydrophilic-to-Hydrophobic Volume Ratios as Structural Determinant in Small-Length Scale Amphiphilic Crystalline Systems:  Silver Salts of Phenylacetylene Nitriles with Pendant Oligo(ethylene) Tj ETQ	q 0::07 0 rgE	3T ¢® verlock ∶
107	Porous Siloxane Linked Phenylacetylene Nitrile Silver Salts from Solid State Dimerization and Low Polymerization. Journal of the American Chemical Society, 2000, 122, 6871-6883.	13.7	57
109	Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous	19.7	215

108Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous
Phenylacetylene Silver Salts. Journal of the American Chemical Society, 1999, 121, 8204-8215.13.7215

#	Article	IF	CITATIONS
109	Coordination Networks of C3v and C2v Phenylacetylene Nitriles and Silver(I) Salts:  Interplay of Ligand Symmetry and Molecular Dipole Moments in the Solid State. Chemistry of Materials, 1999, 11, 1776-1783.	6.7	45
110	Supervariate Ceramics: Gelatinous and Monolithic Ceramics Fabricated under Ambient Conditions. Advanced Engineering Materials, 0, , 2100866.	3.5	7