
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5939253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30575.	1.6	21
2	Resolving temperature limitation on spring productivity in an evergreen conifer forest using a model–data fusion framework. Biogeosciences, 2022, 19, 541-558.	3.3	6
3	Atmospheric Sciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	2.6	1
4	Challenges and Capabilities in Estimating Snow Mass Intercepted in Conifer Canopies With Tree Sway Monitoring. Water Resources Research, 2022, 58, .	4.2	6
5	Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and seasonal environmental conditions in a subalpine conifer forest. Agricultural and Forest Meteorology, 2022, 317, 108904.	4.8	18
6	Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
7	Carbon and Water Cycling in Two Rubber Plantations and a Natural Forest in Mainland Southeast Asia. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
8	Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytologist, 2021, 229, 2586-2600.	7.3	30
9	On thin ice: Linking elevation and longâ€ŧerm losses of lake ice cover. Limnology and Oceanography Letters, 2021, 6, 77-84.	3.9	4
10	Temperature thresholds of ecosystem respiration at a global scale. Nature Ecology and Evolution, 2021, 5, 487-494.	7.8	46
11	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	4.8	125
12	The effect of static pressure-wind covariance on vertical carbon dioxide exchange at a windy subalpine forest site. Agricultural and Forest Meteorology, 2021, 306, 108402.	4.8	10
13	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	27.8	99
14	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	4.8	14
15	Site Characteristics Mediate the Relationship Between Forest Productivity and Satellite Measured Solar Induced Fluorescence. Frontiers in Forests and Global Change, 2021, 4, .	2.3	4
16	Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Global Change Biology, 2020, 26, 6916-6930.	9.5	97
17	Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions. Biogeosciences, 2020, 17, 3733-3755.	3.3	24
18	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646

#	Article	IF	CITATIONS
19	Montane forest productivity across a semiarid climatic gradient. Global Change Biology, 2020, 26, 6945-6958.	9.5	22
20	Hillslope Hydrology Influences the Spatial and Temporal Patterns of Remotely Sensed Ecosystem Productivity. Water Resources Research, 2020, 56, e2020WR027630.	4.2	21
21	Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change, 2020, 10, 555-560.	18.8	106
22	Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences, 2020, 17, 4523-4544.	3.3	20
23	Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model. Global Ecology and Biogeography, 2019, 28, 1351-1365.	5.8	22
24	Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11640-11645.	7.1	219
25	Evidence for non-steady-state carbon emissions from snow-scoured alpine tundra. Nature Communications, 2019, 10, 1306.	12.8	20
26	Characterizing and Constraining Uncertainty Associated with Surface and Boundary Layer Turbulent Fluxes in Simulations of Lake-Effect Snowfall. Weather and Forecasting, 2019, 35, 467-488.	1.4	8
27	Limitations to winter and spring photosynthesis of a Rocky Mountain subalpine forest. Agricultural and Forest Meteorology, 2018, 252, 241-255.	4.8	72
28	Enhanced Temperatureâ€Humidity Similarity Caused by Entrainment Processes With Increased Wind Shear. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4110-4121.	3.3	12
29	A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in a Colorado Subalpine Forest. Journal of Advances in Modeling Earth Systems, 2018, 10, 617-651.	3.8	19
30	Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs. Bulletin of the American Meteorological Society, 2018, 99, 167-187.	3.3	107
31	Evaluating and improving modeled turbulent heat fluxes across the North American Great Lakes. Hydrology and Earth System Sciences, 2018, 22, 5559-5578.	4.9	16
32	Spatiotemporal Consistency of Four Gross Primary Production Products and Solarâ€Induced Chlorophyll Fluorescence in Response to Climate Extremes Across CONUS in 2012. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3140-3161.	3.0	30
33	Surface energy balance closure at ten sites over the Tibetan plateau. Agricultural and Forest Meteorology, 2018, 259, 317-328.	4.8	34
34	Solarâ€Induced Fluorescence Detects Interannual Variation in Gross Primary Production of Coniferous Forests in the Western United States. Geophysical Research Letters, 2018, 45, 7184-7193.	4.0	49
35	Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks. Geophysical Research Letters, 2018, 45, 9275-9287.	4.0	31
36	Estimating the Great Lakes net radiation using satellite remote sensing and MERRA reanalysis. International Journal of Digital Earth, 2017, 10, 764-784.	3.9	7

#	Article	IF	CITATIONS
37	Ecosystem function in complex mountain terrain: Combining models and longâ€ŧerm observations to advance processâ€based understanding. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 825-845.	3.0	19
38	The Estimation of the North American Great Lakes Turbulent Fluxes Using Satellite Remote Sensing and MERRA Reanalysis Data. Remote Sensing, 2017, 9, 141.	4.0	11
39	Optimization of anÂenclosed gas analyzer sampling system for measuring eddy covariance fluxes of H ₂ O and CO ₂ . Atmospheric Measurement Techniques, 2016, 9, 1341-1359.	3.1	18
40	The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – PartÂ1: Data acquisition and site record-keeping. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 451-471.	1.6	12
41	Remote Sensing of the North American Laurentian Great Lakes' Surface Temperature. Remote Sensing, 2016, 8, 286.	4.0	28
42	Wet meadow ecosystems contribute the majority of overwinter soil respiration from snowâ€scoured alpine tundra. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1118-1130.	3.0	14
43	Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Global Change Biology, 2016, 22, 1867-1879.	9.5	142
44	The estimation the Great Lakes net basin supply: implications for water level fluctuations. Proceedings of SPIE, 2016, , .	0.8	0
45	The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6, 1023-1027.	18.8	734
46	A decade of changing surface energy balance components over a large water region. , 2016, , .		0
47	Global parameterization and validation of a twoâ€leaf light use efficiency model for predicting gross primary production across FLUXNET sites. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1045-1072.	3.0	93
48	Optimizing Available Network Resources to Address Questions in Environmental Biogeochemistry. BioScience, 2016, 66, 317-326.	4.9	20
49	The relative contributions of alpine and subalpine ecosystems to the water balance of a mountainous, headwater catchment. Hydrological Processes, 2015, 29, 4794-4808.	2.6	51
50	Contrasting long-term alpine and subalpine precipitation trends in a mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecology and Diversity, 2015, 8, 607-624.	2.4	49
51	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	7.1	265
52	Biotic and climatic controls on interannual variability in carbon fluxes across terrestrial ecosystems. Agricultural and Forest Meteorology, 2015, 205, 11-22.	4.8	47
53	Rainfall interception and the coupled surface water and energy balance. Agricultural and Forest Meteorology, 2015, 214-215, 402-415.	4.8	130
54	Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow. Biogeochemistry, 2015, 125, 185-202.	3.5	40

#	Article	IF	CITATIONS
55	Fluxes of energy, water, and carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado. Plant Ecology and Diversity, 2015, 8, 663-676.	2.4	47
56	The effect of winter drought on evaporation from a highâ€elevation wetland. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1354-1369.	3.0	16
57	Snow Temperature Changes within a Seasonal Snowpack and Their Relationship to Turbulent Fluxes of Sensible and Latent Heat. Journal of Hydrometeorology, 2014, 15, 117-142.	1.9	38
58	Data-driven diagnostics of terrestrial carbon dynamics over North America. Agricultural and Forest Meteorology, 2014, 197, 142-157.	4.8	88
59	Vegetation-specific model parameters are not required for estimating gross primary production. Ecological Modelling, 2014, 292, 1-10.	2.5	37
60	Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 2014, 192-193, 108-120.	4.8	220
61	Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 2014, 34, 929-953.	3.5	536
62	The Importance of Spring and Autumn Atmospheric Conditions for the Evaporation Regime of Lake Superior. Journal of Hydrometeorology, 2013, 14, 1647-1658.	1.9	56
63	Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography, 2013, 22, 994-1006.	5.8	144
64	Predicting the Net Basin Supply to the Great Lakes with a Hydrometeorological Model. Journal of Hydrometeorology, 2012, 13, 1739-1759.	1.9	53
65	Using sonic anemometer temperature to measure sensible heat flux in strong winds. Atmospheric Measurement Techniques, 2012, 5, 2095-2111.	3.1	47
66	An underestimated role of precipitation frequency in regulating summer soil moisture. Environmental Research Letters, 2012, 7, 024011.	5.2	34
67	How representative is a point? The spatial variability of surface energy fluxes across short distances in a sand-sagebrush ecosystem. Journal of Arid Environments, 2012, 87, 42-49.	2.4	11
68	Energy and surface moisture seasonally limit evaporation and sublimation from snow-free alpine tundra. Agricultural and Forest Meteorology, 2012, 157, 106-115.	4.8	44
69	Evaporation from Lake Superior: 1. Physical controls and processes. Journal of Great Lakes Research, 2011, 37, 707-716.	1.9	122
70	Evaporation from Lake Superior: 2. Journal of Great Lakes Research, 2011, 37, 717-724.	1.9	63
71	Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environmental Research Letters, 2011, 6, 024022.	5.2	42
72	Snow: Hydrological and Ecological Feedbacks in Forests. Ecological Studies, 2011, , 541-555.	1.2	9

#	Article	IF	CITATIONS
73	Hydrological impacts of land use/land cover change in a large river basin in central–northern Thailand. International Journal of Climatology, 2010, 30, 1917-1930.	3.5	66
74	Impacts of Land Use/Land Cover Change on Climate and Future Research Priorities. Bulletin of the American Meteorological Society, 2010, 91, 37-46.	3.3	226
75	Concerning the Measurement and Magnitude of Heat, Water Vapor, and Carbon Dioxide Exchange from a Semiarid Grassland. Journal of Applied Meteorology and Climatology, 2009, 48, 982-996.	1.5	19
76	A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry, 2009, 95, 61-76.	3.5	65
77	White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range. Biogeochemistry, 2009, 95, 1-12.	3.5	32
78	Designing a Living Snow Fence for Snow Drift Control. Arctic, Antarctic, and Alpine Research, 2009, 41, 418-425.	1.1	11
79	Reply to comment by David E. Parker et al. on "Unresolved issues with the assessment of multidecadal global land surface temperature trends― Journal of Geophysical Research, 2009, 114, .	3.3	1
80	An Investigation of the Thermal and Energy Balance Regimes of Great Slave and Great Bear Lakes. Journal of Hydrometeorology, 2008, 9, 1318-1333.	1.9	64
81	Estimation of the Minimum Canopy Resistance for Croplands and Grasslands Using Data from the 2002 International H2O Project. Monthly Weather Review, 2008, 136, 4452-4469.	1.4	47
82	The Influence of Lakes on the Regional Energy and Water Balance of the Central Mackenzie River Basin. , 2008, , 309-325.		20
83	The Time Scales of Evaporation from Great Slave Lake. , 2008, , 181-196.		14
84	Interannual Variability of the Thermal Components and Bulk Heat Exchange of Great Slave Lake. , 2008, , 197-219.		8
85	Climate-Lake Interactions. , 2008, , 139-160.		25
86	NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002 Field Campaign. Bulletin of the American Meteorological Society, 2007, 88, 65-82.	3.3	32
87	Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System. Journal of Applied Meteorology and Climatology, 2007, 46, 694-713.	1.5	243
88	Variability in the Environmental Factors Driving Evapotranspiration from a Grazed Rangeland during Severe Drought Conditions. Journal of Hydrometeorology, 2007, 8, 207-220.	1.9	29
89	Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data. Agricultural and Forest Meteorology, 2007, 144, 14-31.	4.8	138
90	Unresolved issues with the assessment of multidecadal global land surface temperature trends. Journal of Geophysical Research, 2007, 112, .	3.3	154

#	Article	IF	CITATIONS
91	Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrological Processes, 2007, 21, 1567-1575.	2.6	114
92	Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorology, 2007, 122, 439-455.	2.3	41
93	The Role of Northern Lakes in a Regional Energy Balance. Journal of Hydrometeorology, 2005, 6, 291-305.	1.9	141
94	The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada. Hydrological Processes, 2004, 18, 1561-1578.	2.6	71
95	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2004, 125, 187-205.	4.8	54
96	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2003, 119, 1-21.	4.8	142
97	Over-Lake Meteorology and Estimated Bulk Heat Exchange of Great Slave Lake in 1998 and 1999. Journal of Hydrometeorology, 2003, 4, 649-659.	1.9	65
98	Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 2003, 4, 680-693.	1.9	72
99	Interannual and Seasonal Variability of the Surface Energy Balance and Temperature of Central Great Slave Lake. Journal of Hydrometeorology, 2003, 4, 720-730.	1.9	96
100	Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 2002, 110, 177-201.	4.8	157
101	The seasonal water and energy exchange above and within a boreal aspen forest. Journal of Hydrology, 2001, 245, 118-136.	5.4	100
102	The impact of an air quality advisory program on voluntary mobile source air pollution reduction. Atmospheric Environment, 2001, 35, 2417-2421.	4.1	9
103	Surface Energy Balance of the Western and Central Canadian Subarctic: Variations in the Energy Balance among Five Major Terrain Types. Journal of Climate, 2001, 14, 3692-3703.	3.2	82
104	CROSS-LAKE VARIATION OF PHYSICAL LIMNOLOGICAL AND CLIMATOLOGICAL PROCESSES OF GREAT SLAVE LAKE. Physical Geography, 2000, 21, 385-406.	1.4	20
105	Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resources Research, 2000, 36, 1069-1077.	4.2	165
106	Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 1999, 5, 41-53.	9.5	180
107	Turbulent Flux Measurements Above and Below the Overstory of a Boreal Aspen Forest. Boundary-Layer Meteorology, 1998, 89, 109-140.	2.3	127
108	Radiation regime and canopy architecture in a boreal aspen forest. Agricultural and Forest Meteorology, 1997, 86, 107-125.	4.8	134

#	Article	IF	CITATIONS
109	Microclimates of Different Vegetated Environments. , 0, , 148-186.		Ο