Hao-yue Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5938879/publications.pdf

Version: 2024-02-01

76 1,684 papers citations

279798 345221 23 h-index

36 g-index 1304

78 all docs 78 docs citations 78 times ranked

citing authors

#	Article	IF	CITATIONS
1	Photocatalytic, Phosphoranyl Radical-Mediated N–O Cleavage of Strained Cycloketone Oximes. Organic Letters, 2019, 21, 2658-2662.	4.6	130
2	A Facile and General Approach to 3-((Trifluoromethyl)thio)-4 <i>H</i> -chromen-4-one. Organic Letters, 2014, 16, 5686-5689.	4.6	113
3	Visible-Light-Driven, Radical-Triggered Tandem Cyclization of <i>o</i> -Hydroxyaryl Enaminones: Facile Access to 3-CF ₂ /CF ₃ -Containing Chromones. Organic Letters, 2017, 19, 146-149.	4.6	99
4	Photoinduced Singleâ€Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. Angewandte Chemie - International Edition, 2020, 59, 6706-6710.	13.8	89
5	Visible-Light-Induced External Radical-Triggered Annulation To Access CF ₂ -Containing Benzoxepine Derivatives. Organic Letters, 2018, 20, 1363-1366.	4.6	55
6	Photocatalytic C–F Bond Borylation of Polyfluoroarenes with NHC-boranes. Organic Letters, 2020, 22, 1742-1747.	4.6	43
7	Synthesis of Functionalized Chromeno [2,3- <i>b</i>) pyrrol-4(1 <i>H</i>)-ones by Silver-Catalyzed Cascade Reactions of Chromones/Thiochromones and Isocyanoacetates. Organic Letters, 2015, 17, 5590-5593.	4.6	40
8	Visibleâ€Lightâ€Promoted Synthesis of 1,4â€Dicarbonyl Compounds via Conjugate Addition of Aroyl Chlorides. Chemistry - an Asian Journal, 2018, 13, 271-274.	3.3	34
9	Visible-Light-Induced, Catalyst-Free Radical Cross-Coupling Cyclization of <i>N</i> -Allylbromodifluoroacetamides with Disulfides or Diselenides. Journal of Organic Chemistry, 2020, 85, 5670-5682.	3.2	34
10	Pot, atom and step economic synthesis: a diversity-oriented approach to construct 2-substituted pyrrolo[2,1-f][1,2,4]triazin-4(3H)-ones. RSC Advances, 2013, 3, 5807.	3.6	33
11	Synthesis of Multisubstituted 2-Aminopyrroles/pyridines via Chemoselective Michael Addition/Intramolecular Cyclization Reaction. Organic Letters, 2014, 16, 4186-4189.	4.6	32
12	<i>L</i> -Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels–Alder Cyclization to Construct Carbazolespirooxindoles. Journal of Organic Chemistry, 2017, 82, 6441-6449.	3.2	32
13	Visible-Light-Driven, Photoredox-Catalyzed Cascade of <i>ortho-</i> Hydroxycinnamic Esters To Access 3-Fluoroalkylated Coumarins. Journal of Organic Chemistry, 2019, 84, 7480-7487.	3.2	31
14	Visible-Light-Driven Sulfonation of α-Trifluoromethylstyrenes: Access to Densely Functionalized CF ₃ -Substituted Tertiary Alcohol. Organic Letters, 2021, 23, 6558-6562.	4.6	30
15	Photocatalytic reductive radical–radical coupling of <i>N</i> , <i>N</i> ,<	4.1	29
16	Photocatalytic Hydroacylation of Alkenes by Directly Using Acyl Oximes. Journal of Organic Chemistry, 2020, 85, 11989-11996.	3.2	29
17	<i>O</i> -Perfluoropyridin-4-yl Oximes: Iminyl Radical Precursors for Photo- or Thermal-Induced N–O Cleavage in C(sp ²)–C(sp ³) Bond Formation. Journal of Organic Chemistry, 2020, 85, 3538-3547.	3.2	29
18	Visible-Light-Induced, Palladium-Catalyzed 1,4-Difunctionalization of 1,3-Dienes with Bromodifluoroacetamides. Organic Letters, 2022, 24, 924-928.	4.6	29

#	Article	IF	Citations
19	Photoredox-Catalyzed Reductive Dimerization of Isatins and Isatin-Derived Ketimines: Diastereoselective Construction of 3,3′-Disubstituted Bisoxindoles. Journal of Organic Chemistry, 2017, 82, 3895-3900.	3.2	28
20	Organocatalytic, Enantioselective, Polarity-Matched Ring-Reorganization Domino Sequence Based on the 3-Oxindole Scaffold. Organic Letters, 2019, 21, 2166-2170.	4.6	28
21	Selectfluor-Triggered Tandem Cyclization of <i>>o</i> -Hydroxyarylenaminones To Access Difluorinated 2-Amino-Substituted Chromanones. Journal of Organic Chemistry, 2017, 82, 9837-9843.	3.2	26
22	On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu2+ under global cerebral ischemia/reperfusion events. Biosensors and Bioelectronics, 2019, 135, 111-119.	10.1	26
23	Diastereoselective Intramolecular [3 + 2]-Annulation of Donor–Acceptor Cyclopropane with Imine-Assembling Hexahydropyrrolo[3,2 < i>-c < /i>) quinolinone Scaffolds. Journal of Organic Chemistry, 2016, 81, 11185-11194.	3.2	25
24	A practical and step-economic route to Favipiravir. Chemical Papers, 2017, 71, 2153-2158.	2.2	25
25	<i>O</i> -Perhalopyridin-4-yl Hydroxylamines: Amidyl-Radical Generation Scaffolds in Photoinduced Direct Amination of Heterocycles. Organic Letters, 2021, 23, 1643-1647.	4.6	25
26	Câ€"H Trifluoromethylation of 2-Substituted/Unsubstituted Aminonaphthoquinones at Room Temperature with Bench-Stable (CF3SO2)2Zn: Synthesis and Antiproliferative Evaluation. Journal of Organic Chemistry, 2017, 82, 6795-6800.	3.2	24
27	Discovery of temperature-dependent, autoinductive reversal of enantioselectivity: palladium-mediated [3+3]-annulation of 4-hydroxycoumarins. Chemical Communications, 2017, 53, 4441-4444.	4.1	23
28	Photoredox-Catalyzed Cascade of <i>>o-</i> Hydroxyarylenaminones to Access 3-Aminated Chromones. Journal of Organic Chemistry, 2022, 87, 1477-1484.	3.2	23
29	Electrochemical heterodifunctionalization of \hat{l} ±-CF ₃ alkenes to access \hat{l} ±-trifluoromethyl- \hat{l} 2-sulfonyl tertiary alcohols. Chemical Communications, 2021, 57, 8969-8972.	4.1	22
30	Diversity-driven and facile 1,3-dipolar cycloaddition to access dispirooxindole-imidazolidine scaffolds. Organic and Biomolecular Chemistry, 2017, 15, 8705-8708.	2.8	20
31	Photocatalytic intermolecular <i>anti</i> -Markovnikov hydroamination of unactivated alkenes with <i>N</i> -hydroxyphthalimide. Organic Chemistry Frontiers, 2021, 8, 273-277.	4.5	20
32	Identification of methyl (5-(6-((4-(methylsulfonyl)piperazin-1-yl)methyl)-4-morpholinopyrrolo[2,1-f][1,2,4]triazin-2-yl)-4-(trifluoromethyl) (CYH33) as an orally bioavailable, highly potent, PI3K alpha inhibitor for the treatment of advanced solid tumors. European Journal of Medicinal Chemistry, 2021, 209, 112913.	pyridin-2-y	l)carbamate
33	Photocatalytic Cyclization/Defluorination Domino Sequence to Access 3-Fluoro-1,5-dihydro-2 <i>H</i> -pyrrol-2-one Scaffold. Organic Letters, 2021, 23, 4754-4758.	4.6	20
34	Recent progress in the nitration of arenes and alkenes. Organic and Biomolecular Chemistry, 2021, 19, 4835-4851.	2.8	20
35	Photoinduced Singleâ€Electron Transfer as an Enabling Principle in the Radical Borylation of Alkenes with NHC–Borane. Angewandte Chemie, 2020, 132, 6772-6776.	2.0	18
36	Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Analytical and Bioanalytical Chemistry, 2022, 414, 2809-2839.	3.7	18

#	Article	IF	CITATIONS
37	Photochemical Organocatalytic Aerobic Cleavage of Câ•€ Bonds Enabled by Charge-Transfer Complex Formation. Organic Letters, 2022, 24, 3920-3925.	4.6	18
38	Unraveling and Manipulating the Stereospecific Retro-Aldol Reaction in the Organocatalytic Asymmetric Aldol Reaction of Isatin and Cyclohexanone. Organic Letters, 2018, 20, 7535-7538.	4.6	17
39	Visible Light-Promoted Radical Relay Cyclization/C–C Bond Formation of <i>N</i> -Allylbromodifluoroacetamides with Quinoxalin-2(1 <i>H</i>)-ones. Journal of Organic Chemistry, 2021, 86, 17173-17183.	3.2	16
40	Visible-Light-Promoted Hydroxydifluoroalkylation of Alkenes Enabled by Electron Donor–Acceptor Complex. Organic Letters, 2021, 23, 9474-9479.	4.6	16
41	Phosphine-Mediated MBH-Type/Umpolung Addition Domino Sequence: Divergent Construction of Coumarins. Organic Letters, 2020, 22, 488-492.	4.6	14
42	A BHT-regulated chemoselective access to monofluorinated chromones. Tetrahedron, 2020, 76, 130833.	1.9	14
43	Photoredox-catalyzed direct aminoalkylation of isatins: diastereoselective access to 3-hydroxy-3-aminoalkylindolin-2-ones analogues. Organic Chemistry Frontiers, 2018, 5, 1608-1612.	4.5	13
44	A Oneâ€Pot Ringâ€Opening/Ringâ€Closure Sequence for the Synthesis of Polycyclic Spirooxindoles. Chemistry - A European Journal, 2019, 25, 4673-4677.	3.3	13
45	<i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C–H Methylation of <i>N</i> -Heteroarenes. Journal of Organic Chemistry, 2021, 86, 11905-11914.	3.2	13
46	Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl <i>N</i> -Heterocycles. Organic Letters, 2022, 24, 5407-5411.	4.6	13
47	Design, synthesis and antiproliferative activity evaluation of a series of pyrrolo[2,1-f][1,2,4]triazine derivatives. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127194.	2.2	12
48	Identification of 2-substituted pyrrolo[1,2-b]pyridazine derivatives as new PARP-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 31, 127710.	2.2	12
49	Visible-light-promoted olefinic trifluoromethylation of enamides with CF ₃ SO ₂ Na. Organic and Biomolecular Chemistry, 2021, 19, 7475-7479.	2.8	12
50	Visible-Light-Driven, Photocatalyst-Free Cascade to Access 3-Cyanoalkyl Coumarins from ortho-Hydroxycinnamic Esters. Journal of Organic Chemistry, 2021, 86, 4245-4253.	3.2	12
51	Organocatalytic Asymmetric Allylic Alkylation of Morita–Baylis–Hillman Carbonates with Diethyl 2-Aminomalonate Assisted by In Situ Protection. Journal of Organic Chemistry, 2017, 82, 12202-12208.	3.2	11
52	Solvent-Minimized, Chromatography-Free, Diastereoselective Synthesis of Oxazolidine-Dispirooxindoles <i>viaoxa</i> -1,3-Dipolar Cycloaddition of 3-Oxindole. Journal of Organic Chemistry, 2018, 83, 2948-2953.	3.2	10
53	Intramolecular hydrogen-bonding-assisted phosphine-catalysed [3 + 2] cyclisation of ynones with o-hydroxy/amino benzaldehydes. Organic and Biomolecular Chemistry, 2019, 17, 2187-2191.	2.8	10
54	Enantioselectivity-Switchable Organocatalytic $[4+2]$ -Annulation to Access the Spirooxindoleâ \in Norcamphor Scaffold. Organic Letters, 2021, 23, 963-968.	4.6	10

#	Article	IF	CITATIONS
55	Visible-Light-Promoted Cross-Coupling of <i>O</i> -Aryl Oximes and Nitrostyrenes to Access Cyanoalkylated Alkenes. Organic Letters, 2022, 24, 4640-4644.	4.6	10
56	Divergent Aerobic Oxidative Ringâ€Opening Cascades of Isatins with 1,2,3,4â€Tetrahydroisoquinoline. European Journal of Organic Chemistry, 2016, 2016, 5096-5101.	2.4	9
57	Organocatalytic Domino Entry to an Octahydroacridine Scaffold Bearing Three Contiguous Stereocenters. Journal of Organic Chemistry, 2018, 83, 12284-12290.	3.2	9
58	A phosphine-mediated domino sequence of salicylaldehyde with but-3-yn-2-one: rapid access to chromanone. Organic and Biomolecular Chemistry, 2020, 18, 8916-8920.	2.8	9
59	Photocatalyzed Defluorinative Dichloromethylation of α-CF ₃ Alkenes Using CHCl ₃ as the Radical Source. Journal of Organic Chemistry, 2023, 88, 6354-6363.	3.2	9
60	Straightforward Synthesis of Novel Difluorinated 2â€Hydroxylâ€Substituted Dihydroquinolones Through Selectfluorâ€triggered Annulation of 2â€Aminoarylenaminones. ChemistrySelect, 2018, 3, 9218-9221.	1.5	8
61	Cul-mediated benzannulation of (<i>ortho</i> -arylethynyl)phenylenaminones to assemble α-aminonaphthalene derivatives. Organic Chemistry Frontiers, 2021, 8, 3250-3254.	4.5	8
62	Phosphonium Ylide-Mediated Programmable Fluorination to Access Mono- and Difluoromethylarenes. Organic Letters, 2021, 23, 2538-2542.	4.6	8
63	Facile oxidative cyclization to access C2-quaternary 2-hydroxy-indolin-3-ones: synthetic studies towards matemone. New Journal of Chemistry, 2017, 41, 11503-11506.	2.8	7
64	Unusual Ligandâ€toâ€Metalâ€Ratioâ€Controlled Bidirectional Enantioselectivity in Pdâ€Catalysed [3+3]â€Annulation of Morita–Baylis–Hillman Acetate. European Journal of Organic Chemistry, 2017, 2017, 6961-6965.	2.4	7
65	A phosphine-catalysed one-pot domino sequence to access cyclopentene-fused coumarins. Organic and Biomolecular Chemistry, 2021, 19, 7074-7080.	2.8	7
66	Facile Construction of Pyrrolo[1,2-a]indolenine Scaffold via DiaÂstereoselective [3+2] Annulation of Donor–Acceptor Cyclopropane with Indolenine. Synthesis, 2017, 49, 4292-4298.	2.3	6
67	A ratiometric electrochemical microsensor for monitoring chloride ions <i>in vivo</i> . Analyst, The, 2021, 146, 6202-6210.	3.5	5
68	TBN-triggered, manipulable annulations of <i>o</i> -hydroxyarylenaminones for divergent syntheses of oximinochromanones and oximinocoumaranones. Chemical Communications, 2021, 57, 12285-12288.	4.1	5
69	An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates. Organic Chemistry Frontiers, 2021, 8, 778-783.	4.5	4
70	Photoinduced Construction of a Benzothienopyridine- <i>S,S</i> dioxide Framework Enabled by Polychloropyridyl Multifunctional Motifs. Journal of Organic Chemistry, 2022, 87, 4732-4741.	3.2	4
71	Organocatalytic domino sequence to asymmetrically access spirocyclic oxindole- \hat{l} ±-methylene- \hat{l} 3-lactams. Tetrahedron, 2021, , 132163.	1.9	3
72	Intramolecular [3+2]-cycloaddition of salicylaldehydes-based cyclic azomethine imines to access novel tetrahydrochromeno[4,3-c]pyrazolo[1,2-a]pyrazol-9-ones. Tetrahedron, 2021, 83, 131992.	1.9	2

#	Article	IF	CITATIONS
73	Unveiling the abnormal effect of temperature on enantioselectivity in the palladium-mediated decabonylative alkylation of MBH acetate. Organic Chemistry Frontiers, 2021, 8, 5058-5063.	4.5	2
74	Phosphine-Mediated Morita–Baylis–Hillman-Type/Wittig Cascade: Access to <i>E</i> -Configured 3-Styryl- and 3-(Benzopyrrole/furan-2-yl) Quinolinones. Journal of Organic Chemistry, 2022, 87, 974-984.	3.2	2
75	Programmable iodization/deuterolysis sequences of phosphonium ylides to access deuterated benzyl iodides and aromatic aldehydes. Chemical Communications, 2022, 58, 4215-4218.	4.1	1
76	[3+2] vs $[4+1]$ Annulation: Revisiting mechanism studies on phosphine-catalysed domino sequence of alkynoates and activated methylenes. Organic and Biomolecular Chemistry, 2022, , .	2.8	0