Kotb abdelmohsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/593684/publications.pdf

Version: 2024-02-01

149 papers 21,190 citations

63 h-index 9861 141 g-index

154 all docs

154 docs citations

154 times ranked

33287 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biology, 2016, 13, 34-42.	3.1	914
3	LincRNA-p21 Suppresses Target mRNA Translation. Molecular Cell, 2012, 47, 648-655.	9.7	876
4	Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by <i>CircPABPN1</i> . RNA Biology, 2017, 14, 361-369.	3.1	655
5	Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neuroscience, 2019, 22, 719-728.	14.8	577
6	Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell and Developmental Biology, 2014, 34, 9-14.	5.0	561
7	Posttranscriptional Gene Regulation by Long Noncoding RNA. Journal of Molecular Biology, 2013, 425, 3723-3730.	4.2	517
8	Phosphorylation of HuR by Chk2 Regulates SIRT1 Expression. Molecular Cell, 2007, 25, 543-557.	9.7	491
9	miR-182-Mediated Downregulation of BRCA1 Impacts DNA Repair and Sensitivity to PARP Inhibitors. Molecular Cell, 2011, 41, 210-220.	9.7	409
10	Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature Communications, 2013, 4, 2939.	12.8	382
11	<scp>RNA</scp> in extracellular vesicles. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1413.	6.4	363
12	Posttranscriptional regulation of cancer traits by HuR. Wiley Interdisciplinary Reviews RNA, 2010, 1, 214-229.	6.4	361
13	miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor \hat{I}^3 Expression. Molecular and Cellular Biology, 2011, 31, 626-638.	2.3	329
14	Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1471.	6.4	327
15	microRNA Expression Patterns Reveal Differential Expression of Target Genes with Age. PLoS ONE, 2010, 5, e10724.	2.5	304
16	RNA-Binding Proteins HuR and PTB Promote the Translation of Hypoxia-Inducible Factor 1α. Molecular and Cellular Biology, 2008, 28, 93-107.	2.3	257
17	SRT1720 improves survival and healthspan of obese mice. Scientific Reports, 2011, 1, 70.	3.3	249
18	Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biological Chemistry, 2008, 389, 243-255.	2.5	232

#	Article	IF	CITATIONS
19	p16INK4a Translation Suppressed by miR-24. PLoS ONE, 2008, 3, e1864.	2.5	231
20	Posttranscriptional Orchestration of an Anti-Apoptotic Program by HuR. Cell Cycle, 2007, 6, 1288-1292.	2.6	220
21	RNA-binding protein nucleolin in disease. RNA Biology, 2012, 9, 799-808.	3.1	219
22	Evidence for miRâ€181 involvement in neuroinflammatory responses of astrocytes. Glia, 2013, 61, 1018-1028.	4.9	208
23	Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Research, 2017, 45, 4021-4035.	14.5	205
24	MKP-1 mRNA Stabilization and Translational Control by RNA-Binding Proteins HuR and NF90. Molecular and Cellular Biology, 2008, 28, 4562-4575.	2.3	204
25	Analysis of Turnover and Translation Regulatory RNA-Binding Protein Expression through Binding to Cognate mRNAs. Molecular and Cellular Biology, 2007, 27, 6265-6278.	2.3	191
26	miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20297-20302.	7.1	189
27	Long noncoding RNAs (IncRNAs) and the molecular hallmarks of aging. Aging, 2014, 6, 992-1009.	3.1	189
28	Transcriptome signature of cellular senescence. Nucleic Acids Research, 2019, 47, 7294-7305.	14.5	185
29	Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell, 2013, 12, 890-900.	6.7	184
30	Posttranslational control of <scp>HuR</scp> function. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1372.	6.4	184
31	Nuclear HuR accumulation through phosphorylation by Cdk1. Genes and Development, 2008, 22, 1804-1815.	5.9	181
32	HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA <i>RMRP</i> . Genes and Development, 2016, 30, 1224-1239.	5.9	176
33	Identification of senescent cell surface targetable protein DPP4. Genes and Development, 2017, 31, 1529-1534.	5.9	168
34	LncRNA <i>OIP5-AS1/cyrano</i> sponges RNA-binding protein HuR. Nucleic Acids Research, 2016, 44, 2378-2392.	14.5	158
35	PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nature Communications, 2014, 5, 5248.	12.8	156
36	High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Research, 2017, 45, e116-e116.	14.5	155

#	Article	IF	Citations
37	Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO Journal, 2009, 28, 1271-1282.	7.8	150
38	hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nature Structural and Molecular Biology, 2010, 17, 732-739.	8.2	146
39	Noncoding RNAs in Alzheimer's disease. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1463.	6.4	144
40	Emerging roles and context of circular <scp>RNAs</scp> . Wiley Interdisciplinary Reviews RNA, 2017, 8, e1386.	6.4	127
41	A <scp>BRCA</scp> 1â€interacting lnc <scp>RNA</scp> regulates homologous recombination. EMBO Reports, 2015, 16, 1520-1534.	4.5	126
42	MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging, 2010, 2, 333-343.	3.1	121
43	<i>7SL</i> RNA represses p53 translation by competing with HuR. Nucleic Acids Research, 2014, 42, 10099-10111.	14.5	121
44	miR-375 Inhibits Differentiation of Neurites by Lowering HuD Levels. Molecular and Cellular Biology, 2010, 30, 4197-4210.	2.3	119
45	miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle, 2010, 9, 1354-1359.	2.6	117
46	Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Research, 2011, 39, 8513-8530.	14.5	112
47	Circular RNAs in monkey muscle: age-dependent changes. Aging, 2015, 7, 903-910.	3.1	104
48	Age-associated miRNA Alterations in Skeletal Muscle from Rhesus Monkeys reversed by caloric restriction. Aging, 2013, 5, 692-703.	3.1	104
49	NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Research, 2010, 38, 225-238.	14.5	103
50	Epidermal Growth Factor Receptor Is a Common Mediator of Quinone-induced Signaling Leading to Phosphorylation of Connexin-43. Journal of Biological Chemistry, 2003, 278, 38360-38367.	3.4	102
51	MicroRegulators come of age in senescence. Trends in Genetics, 2011, 27, 233-241.	6.7	102
52	Competitive Regulation of Nucleolin Expression by HuR and miR-494. Molecular and Cellular Biology, 2011, 31, 4219-4231.	2.3	102
53	miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting <i>Smad4</i> Genes and Development, 2015, 29, 1605-1617.	5.9	93
54	HuD Regulates Coding and Noncoding RNA to Induce APPâ†'Aβ Processing. Cell Reports, 2014, 7, 1401-1409.	6.4	90

#	Article	IF	Citations
55	Posttranscriptional Derepression of GADD45î± by Genotoxic Stress. Molecular Cell, 2006, 22, 117-128.	9.7	89
56	Survey of senescent cell markers with age in human tissues. Aging, 2020, 12, 4052-4066.	3.1	88
57	Translational Control of TOP2A Influences Doxorubicin Efficacy. Molecular and Cellular Biology, 2011, 31, 3790-3801.	2.3	85
58	Regulation of senescence traits by MAPKs. GeroScience, 2020, 42, 397-408.	4.6	84
59	Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. EMBO Journal, 2011, 30, 1040-1053.	7.8	74
60	Increased MKK4 Abundance with Replicative Senescence Is Linked to the Joint Reduction of Multiple MicroRNAs. Science Signaling, 2009, 2, ra69.	3.6	71
61	Noncoding <scp>RNA</scp> control of cellular senescence. Wiley Interdisciplinary Reviews RNA, 2015, 6, 615-629.	6.4	71
62	Long noncoding RNAs in diseases of aging. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 209-221.	1.9	70
63	RNAâ€binding proteins implicated in the hypoxic response. Journal of Cellular and Molecular Medicine, 2009, 13, 2759-2769.	3.6	66
64	SASP regulation by noncoding RNA. Mechanisms of Ageing and Development, 2017, 168, 37-43.	4.6	66
65	The Oncogenic RNA-Binding Protein Musashi1 Is Regulated by HuR via mRNA Translation and Stability in Glioblastoma Cells. Molecular Cancer Research, 2012, 10, 143-155.	3.4	65
66	Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Research, 2017, 45, 9514-9527.	14.5	64
67	The Human Glucocorticoid Receptor as an RNA-Binding Protein: Global Analysis of Glucocorticoid Receptor-Associated Transcripts and Identification of a Target RNA Motif. Journal of Immunology, 2011, 186, 1189-1198.	0.8	61
68	RNA-binding protein AUF1 represses Dicer expression. Nucleic Acids Research, 2012, 40, 11531-11544.	14.5	61
69	circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Research, 2020, 48, 3789-3805.	14.5	60
70	Growth Inhibition by miR-519 via Multiple p21-Inducing Pathways. Molecular and Cellular Biology, 2012, 32, 2530-2548.	2.3	59
71	2-Methyl-1,4-naphthoquinone, vitamin K(3), decreases gap-junctional intercellular communication via activation of the epidermal growth factor receptor/extracellular signal-regulated kinase cascade. Cancer Research, 2002, 62, 4922-8.	0.9	59
72	Senescence-Associated MicroRNAs. International Review of Cell and Molecular Biology, 2017, 334, 177-205.	3.2	58

#	Article	IF	Citations
73	Regulation of HuR by DNA Damage Response Kinases. Journal of Nucleic Acids, 2010, 2010, 1-8.	1.2	57
74	The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA. Nucleic Acids Research, 2009, 37, 2658-2671.	14.5	56
75	AUF1 ligand <i>circPCNX</i> reduces cell proliferation by competing with <i>p21</i> mRNA to increase p21 production. Nucleic Acids Research, 2021, 49, 1631-1646.	14.5	56
76	Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2. Cell Reports, 2016, 15, 926-934.	6.4	55
77	Circular RNAs in myogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194372.	1.9	53
78	Novel RNA-binding activity of MYF5 enhances <i>Ccnd1</i> / <i>Cyclin D1</i> mRNA translation during myogenesis. Nucleic Acids Research, 2016, 44, 2393-2408.	14.5	52
79	RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Molecular and Cellular Biology, 2015, 35, 2965-2978.	2.3	51
80	Mitochondrial noncoding RNA transport. BMB Reports, 2017, 50, 164-174.	2.4	49
81	Targeted Deletion of MKK4 in Cancer Cells: A Detrimental Phenotype Manifests as Decreased Experimental Metastasis and Suggests a Counterweight to the Evolution of Tumor-Suppressor Loss. Cancer Research, 2006, 66, 5560-5564.	0.9	48
82	Tyrosine phosphorylation of HuR by JAK3 triggers dissociation and degradation of HuR target mRNAs. Nucleic Acids Research, 2014, 42, 1196-1208.	14.5	45
83	Differential Stability of Thymidylate Synthase 3′-Untranslated Region Polymorphic Variants Regulated by AUF1. Journal of Biological Chemistry, 2006, 281, 23456-23463.	3.4	44
84	HuR regulates gap junctional intercellular communication by controlling \hat{l}^2 -catenin levels and adherens junction integrity. Hepatology, 2009, 50, 1567-1576.	7.3	41
85	AUF1 promotes let-7b loading on Argonaute 2. Genes and Development, 2015, 29, 1599-1604.	5.9	41
86	Analysis of Circular RNAs Using the Web Tool CircInteractome. Methods in Molecular Biology, 2018, 1724, 43-56.	0.9	40
87	NF90 coordinately represses the senescence-associated secretory phenotype. Aging, 2012, 4, 695-708.	3.1	40
88	dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer. Cancer Biology and Therapy, 2014, 15, 688-698.	3.4	39
89	RNA-Binding Protein AUF1 Promotes Myogenesis by Regulating MEF2C Expression Levels. Molecular and Cellular Biology, 2014, 34, 3106-3119.	2.3	39
90	Role of RNA binding protein HuR in ductal carcinoma <i>in situ</i> of the breast. Journal of Pathology, 2011, 224, 529-539.	4.5	38

#	Article	IF	CITATIONS
91	SCAMP4 enhances the senescent cell secretome. Genes and Development, 2018, 32, 909-914.	5.9	38
92	Regulation of senescence by microRNA biogenesis factors. Ageing Research Reviews, 2012, 11, 491-500.	10.9	37
93	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	6.4	35
94	Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nature Communications, 2015, 6, 8888.	12.8	34
95	Methods for analysis of circular RNAs. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1566.	6.4	34
96	LncRNA <i>OIP5-AS1/cyrano</i> suppresses GAK expression to control mitosis. Oncotarget, 2017, 8, 49409-49420.	1.8	34
97	RNA binding protein HuR regulates the expression of ABCA1. Journal of Lipid Research, 2014, 55, 1066-1076.	4.2	33
98	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	3.1	32
99	miR-196b-Mediated Translation Regulation of Mouse Insulin2 via the 5′UTR. PLoS ONE, 2014, 9, e101084.	2.5	31
100	Mitochondrial RNA in Alzheimer's Disease Circulating Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 2020, 8, 581882.	3.7	31
101	Induction of <i>VEGFA</i> mRNA translation by CoCl ₂ mediated by HuR. RNA Biology, 2015, 12, 1121-1130.	3.1	30
102	Conditional Knockout of the RNA-Binding Protein HuR in CD4+ T Cells Reveals a Gene Dosage Effect on Cytokine Production. Molecular Medicine, 2014, 20, 93-108.	4.4	29
103	Signaling Effects of Menadione: From Tyrosine Phosphatase Inactivation to Connexin Phosphorylation. Methods in Enzymology, 2004, 378, 258-272.	1.0	28
104	Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation. Free Radical Biology and Medicine, 2016, 99, 225-233.	2.9	28
105	RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biology, 2016, 13, 622-634.	3.1	28
106	RT-qPCR Detection of Senescence-Associated Circular RNAs. Methods in Molecular Biology, 2017, 1534, 79-87.	0.9	28
107	Intracellular RNA-tracking methods. Open Biology, 2018, 8, 180104.	3.6	28
108	Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Research, 2020, 48, 12943-12956.	14.5	28

#	Article	IF	Citations
109	The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells, 2021, 10, 1740.	4.1	28
110	Modulation of Cancer Traits by Tumor Suppressor microRNAs. International Journal of Molecular Sciences, 2013, 14, 1822-1842.	4.1	27
111	Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. Nucleic Acids Research, 2018, 46, 12040-12051.	14.5	27
112	Paradoxical microRNAs. Cell Cycle, 2011, 10, 751-759.	2.6	26
113	Doxorubicin induces EGF receptor-dependent downregulation of gap junctional intercellular communication in rat liver epithelial cells. Biological Chemistry, 2005, 386, 217-223.	2.5	25
114	Novel MicroRNA Reporter Uncovers Repression of Let-7 by GSK-3Î ² . PLoS ONE, 2013, 8, e66330.	2.5	25
115	Loss of RNA-binding protein GRSF1 activates mTOR to elicit a proinflammatory transcriptional program. Nucleic Acids Research, 2019, 47, 2472-2486.	14.5	25
116	RNA-Binding Protein HuR Promotes Th17 Cell Differentiation and Can Be Targeted to Reduce Autoimmune Neuroinflammation. Journal of Immunology, 2020, 204, 2076-2087.	0.8	22
117	Early SRC activation skews cell fate from apoptosis to senescence. Science Advances, 2022, 8, eabm0756.	10.3	22
118	Activation of \hat{l}^2 2-adrenergic receptor by (R,R \hat{a} \in 2)-4 \hat{a} \in 2-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cellular Signalling, 2015, 27, 997-1007.	3.6	21
119	A Circular RNA from the <i>MDM2</i> Locus Controls Cell Cycle Progression by Suppressing p53 Levels. Molecular and Cellular Biology, 2020, 40, .	2.3	21
120	Posttranscriptional Regulation of Insulin Family Ligands and Receptors. International Journal of Molecular Sciences, 2013, 14, 19202-19229.	4.1	20
121	NQO1 protects obese mice through improvements in glucose and lipid metabolism. Npj Aging and Mechanisms of Disease, 2020, 6, 13.	4.5	20
122	GRSF1 suppresses cell senescence. Aging, 2018, 10, 1856-1866.	3.1	19
123	Dicumarol is a potent reversible inhibitor of gap junctional intercellular communication. Archives of Biochemistry and Biophysics, 2005, 434, 241-247.	3.0	16
124	Epidermal growth factor- and stress-induced loss of gap junctional communication is mediated by ERK-1/ERK-2 but not ERK-5 in rat liver epithelial cells. Biochemical and Biophysical Research Communications, 2007, 364, 313-317.	2.1	14
125	NF90 regulation of immune factor expression in response to malaria antigens. Cell Cycle, 2019, 18, 708-722.	2.6	14
126	Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Research, 2021, 49, 7389-7405.	14.5	14

#	Article	IF	CITATIONS
127	Identification of gingerenone A as a novel senolytic compound. PLoS ONE, 2022, 17, e0266135.	2.5	13
128	Theoretical Proposal: Allele Dosage of MAP2K4/MKK4 Could Rationalize Frequent 17p Loss in Diverse Human Cancers. Cell Cycle, 2006, 5, 1090-1093.	2.6	11
129	Acid ceramidase promotes senescent cell survival. Aging, 2021, 13, 15750-15769.	3.1	11
130	Impact of Pyrrolidine Dithiocarbamate and Interleukin-6 on Mammalian Target of Rapamycin Complex 1 Regulation and Global Protein Translation. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 905-913.	2.5	10
131	LincRNA-p21 Suppresses Target mRNA Translation. Molecular Cell, 2013, 50, 303.	9.7	10
132	LncRNA <i>OIP5-AS1-</i> directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Research, 2022, 50, 7115-7133.	14.5	10
133	Senescence-associated microRNAs linked to tumorigenesis. Cell Cycle, 2011, 10, 3211-3212.	2.6	8
134	Loss of miR-451a enhances SPARC production during myogenesis. PLoS ONE, 2019, 14, e0214301.	2.5	8
135	Identification of atrialâ€enriched lncRNA <i>Walras</i> linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB Journal, 2022, 36, e22051.	0.5	5
136	Modulation of Gene Expression by RNA Binding Proteins: mRNA Stability and Translation. , 2012, , .		4
137	Evolutionarily Selected Overexpression of the Cytokine BAFF Enhances Mucosal Immune Response Against P. falciparum. Frontiers in Immunology, 2020, 11, 575103.	4.8	4
138	Systematic identification of NF90 target RNAs by iCLIP analysis. Scientific Reports, 2022, 12, 364.	3.3	3
139	Alternative Polyadenylation Utilization Results in Ribosome Assembly and mRNA Translation Deficiencies in a Model for Muscle Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1130-1140.	3.6	3
140	Glucocorticoid (GC) Modulation of Global miRNA Profile in Human Airway Epithelial Cells. Journal of Allergy and Clinical Immunology, 2011, 127, AB64-AB64.	2.9	2
141	Senescence IncRNAs govern cell surface components: IncRNA-OIS1 transcriptionally elevates DPP4. Non-coding RNA Investigation, 0, 3, 6-6.	0.6	1
142	Noncoding RNAs in control of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194520.	1.9	1
143	miRNA-Based Ovarian Cancer Diagnosis and Therapy. , 2014, , 115-127.		1
144	Cooperative Translational Control of Polymorphic BAFF by NF90 and miR-15a. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
145	Response to Comment on "Increased MKK4 Abundance with Replicative Senescence Is Linked to the Joint Reduction of Multiple MicroRNAs― Science Signaling, 2010, 3, .	3.6	O
146	MICRORNA REGULATORS OF THE SENESCENCE TRANSCRIPTOME. Innovation in Aging, 2019, 3, S835-S835.	0.1	0
147	Abstract PR03: A lncRNA regulates DNA repair by homologous recombination. , 2016, , .		0
148	Abstract IA04: Control of cell senescence by cancer-associated protein HuR and target noncoding RNAs. , 2017, , .		0
149	High-precision screen to identify IncRNAs governing specific mitotic stages. Non-coding RNA Investigation, 0, 4, 9-9.	0.6	0