Rui-Qing Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/593652/publications.pdf

Version: 2024-02-01

516710 677142 22 933 16 22 h-index citations g-index papers 22 22 22 907 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effects of proteins on magnesium degradation - static vs. dynamic conditions. Journal of Magnesium and Alloys, 2023, 11, 1332-1342.	11.9	7
2	Recent progress on coatings of biomedical magnesium alloy. Smart Materials in Medicine, 2022, 3, 104-116.	6.7	75
3	A robust calcium carbonate (CaCO3) coating on biomedical MgZnCa alloy for promising corrosion protection. Corrosion Science, 2022, 198, 110124.	6.6	29
4	Tailoring of Biodegradable Magnesium Alloy Surface with Schiff Base Coating via Electrostatic Spraying for Better Corrosion Resistance. Metals, 2022, 12, 471.	2.3	10
5	A comprehensive comparison of the corrosion performance, fatigue behavior and mechanical properties of micro-alloyed MgZnCa and MgZnGe alloys. Materials and Design, 2020, 185, 108285.	7.0	17
6	Corrosion inhibition of pre-formed mussel adhesive protein (Mefp-1) film to magnesium alloy. Corrosion Science, 2020, 164, 108309.	6.6	15
7	The stress corrosion cracking behaviour of biomedical Mg-1Zn alloy in synthetic or natural biological media. Corrosion Science, 2020, 175, 108876.	6.6	27
8	Influence of Zirconium (Zr) on the microstructure, mechanical properties and corrosion behavior of biodegradable zinc-magnesium alloys. Journal of Alloys and Compounds, 2020, 840, 155792.	5 . 5	18
9	Proteins and medium-flow conditions: how they influence the degradation of magnesium. Surface Innovations, 2020, 8, 224-233.	2.3	8
10	Improved biocompatibility and degradation behavior of biodegradable Zn-1Mg by grafting zwitterionic phosphorylcholine chitosan (PCCs) coating on silane pre-modified surface. Applied Surface Science, 2020, 527, 146914.	6.1	27
11	In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia, 2019, 97, 608-622.	8.3	86
12	Investigation and application of mussel adhesive protein nanocomposite film-forming inhibitor for reinforced concrete engineering. Corrosion Science, 2019, 153, 333-340.	6.6	22
13	Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomaterialia, 2019, 98, 256-268.	8.3	51
14	Microstructural influence on corrosion behavior of MgZnGe alloy in NaCl solution. Journal of Alloys and Compounds, 2019, 783, 179-192.	5 . 5	61
15	Magnesium degradation under physiological conditions $\hat{a}\in$ Best practice. Bioactive Materials, 2018, 3, 174-185.	15.6	177
16	Exploring the effects of organic molecules on the degradation of magnesium under cell culture conditions. Corrosion Science, 2018, 132, 35-45.	6.6	42
17	Adsorption of Proteins on Degradable Magnesium—Which Factors are Relevant?. ACS Applied Materials & Interfaces, 2018, 10, 42175-42185.	8.0	33
18	Heating-Induced Enhancement of Corrosion Protection of Carbon Steel by a Nanocomposite Film Containing Mussel Adhesive Protein. Journal of the Electrochemical Society, 2017, 164, C188-C193.	2.9	6

#	Article	lF	CITATION
19	Insight into the anti-corrosion performance of electrodeposited silane/nano-CeO2 film on carbon steel. Surface and Coatings Technology, 2017, 326, 183-191.	4.8	33
20	Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan. Journal of Colloid and Interface Science, 2016, 478, 246-255.	9.4	18
21	Localized Corrosion of Binary Mg–Ca Alloy in 0.9Âwt% Sodium Chloride Solution. Acta Metallurgica Sinica (English Letters), 2016, 29, 46-57.	2.9	23
22	EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. Journal of Electroanalytical Chemistry, 2013, 688, 275-281.	3.8	148