
Xiaonan Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5936205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The texture of plant proteinâ€based meat analogs by high moisture extrusion: A review. Journal of Texture Studies, 2023, 54, 351-364.	2.5	15
2	Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate. Biomaterials, 2022, 283, 121455.	11.4	39
3	High moisture extrusion cooking on soy proteins: Importance influence of gums on promoting the fiber formation. Food Research International, 2022, 156, 111189.	6.2	33
4	High moisture extrusion of soy protein and wheat gluten blend: An underlying mechanism for the formation of fibrous structures. LWT - Food Science and Technology, 2022, 163, 113561.	5.2	29
5	An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food Chemistry, 2022, 394, 133484.	8.2	11
6	Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annual Review of Food Science and Technology, 2021, 12, 119-147.	9.9	107
7	Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food and Function, 2021, 12, 10875-10886.	4.6	8
8	The effects of chloride and the antioxidant capacity of fried foods on 3-chloro-1,2-propanediol esters and glycidyl esters during long-term deep-frying. LWT - Food Science and Technology, 2021, 145, 111511.	5.2	7
9	Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. Journal of Agricultural and Food Chemistry, 2021, 69, 8929-8943.	5.2	30
10	Development and characterization of nanoparticles formed by soy peptide aggregate and epigallocatechin-3-gallate as an emulsion stabilizer. LWT - Food Science and Technology, 2021, 152, 112385.	5.2	24
11	Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC–MS. Food Chemistry: X, 2021, 12, 100141.	4.3	31
12	The physicochemical properties and gastrointestinal fate of oleosomes from non-heated and heated soymilk. Food Hydrocolloids, 2020, 100, 105418.	10.7	32
13	A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloids, 2020, 99, 105329.	10.7	192
14	Thermally treated soya bean oleosomes: the changes in their stability and associated proteins. International Journal of Food Science and Technology, 2020, 55, 229-238.	2.7	24
15	Deciphering the Structural Network That Confers Stability to High Internal Phase Pickering Emulsions by Cross-Linked Soy Protein Microgels and Their <i>In Vitro</i> Digestion Profiles. Journal of Agricultural and Food Chemistry, 2020, 68, 9796-9803.	5.2	58
16	Complexation between soy peptides and epigallocatechin-3-gallate (EGCG): Formation mechanism and morphological characterization. LWT - Food Science and Technology, 2020, 134, 109990.	5.2	34
17	Analysis of multiple mycotoxins-contaminated wheat by a smart analysis platform. Analytical Biochemistry, 2020, 610, 113928.	2.4	22
18	Lipase catalysis of <i>α</i> â€linolenic acidâ€rich medium―and longâ€chain triacylglycerols from perilla oil and mediumâ€chain triacylglycerols with reduced byâ€products. Journal of the Science of Food and Agriculture, 2020, 100, 4565-4574.	3.5	10

#	Article	IF	CITATIONS
19	Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture. Genomics, 2020, 112, 2949-2958.	2.9	15
20	Wheat germ-derived peptide ADWGGPLPH abolishes high glucose-induced oxidative stress <i>via</i> modulation of the PKCî¶/AMPK/NOX4 pathway. Food and Function, 2020, 11, 6843-6854.	4.6	23
21	Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics Sonochemistry, 2020, 68, 105202.	8.2	117
22	Preparation and characterization of soy protein microspheres using amorphous calcium carbonate cores. Food Hydrocolloids, 2020, 107, 105953.	10.7	25
23	Anthocyanins in Food. , 2019, , 10-17.		8
24	Valorization of Soy Whey Wastewater: How Epigallocatechin-3-gallate Regulates Protein Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15504-15513.	6.7	25
25	Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (<i>Glycine max</i> L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 5772-5781.	5.2	90
26	Recovery of high valueâ€added protein from enzymeâ€assisted aqueous extraction (EAE) of soybeans by deadâ€end ultrafiltration. Food Science and Nutrition, 2019, 7, 858-868.	3.4	5
27	Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study. Food Hydrocolloids, 2019, 94, 519-527.	10.7	46
28	Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Research International, 2019, 120, 603-609.	6.2	101
29	Changes in antioxidant activity of Alcalase-hydrolyzed soybean hydrolysate under simulated gastrointestinal digestion and transepithelial transport. Journal of Functional Foods, 2018, 42, 298-305.	3.4	85
30	Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility. Food Research International, 2018, 106, 619-625.	6.2	99
31	3D confocal Raman imaging of oil-rich emulsion from enzyme-assisted aqueous extraction of extruded soybean powder. Food Chemistry, 2018, 249, 16-21.	8.2	26
32	Physicochemical and oxidative stability of a soybean oleosome-based emulsion and its <i>in vitro</i> digestive fate as affected by (â^')-epigallocatechin-3-gallate. Food and Function, 2018, 9, 6146-6154.	4.6	25
33	Physical-Chemical Properties of Edible Film Made from Soybean Residue and Citric Acid. Journal of Chemistry, 2018, 2018, 1-8.	1.9	15
34	Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Research International, 2018, 111, 256-264.	6.2	63
35	Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry, 2018, 245, 871-878.	8.2	269
36	Mitigating the in vitro enzymatic digestibility of noodles by aqueous extracts of Malay cherry leaves. Food Chemistry, 2017, 232, 571-578.	8.2	14

#	Article	IF	CITATIONS
37	Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Research International, 2017, 100, 551-557.	6.2	56
38	In Vitro and In Silico Studies of Anthocyanins Against Pancreatic α-Amylase. Springer Theses, 2017, , 115-125.	0.1	0
39	Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63, 727-734.	10.7	212
40	Bread Fortified with Anthocyanin-Rich Extract from Black Rice as Nutraceutical Sources: Its Quality Attributes and In Vitro Digestibility. Springer Theses, 2017, , 87-102.	0.1	0
41	Secondary Structure and Subunit Composition of Soy Protein <i>In Vitro</i> Digested by Pepsin and Its Relation with Digestibility. BioMed Research International, 2016, 2016, 1-11.	1.9	37
42	Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [<i>Vigna radiate</i> (L.)] protein isolates and glucose and on structural and physicoâ€chemical properties of conjugates. Journal of the Science of Food and Agriculture, 2016, 96, 1532-1540.	3.5	66
43	Does the hydrophobic group on sn-2 position of phosphatidylcholine decide its emulsifying ability?. LWT - Food Science and Technology, 2016, 74, 255-262.	5.2	11
44	Improvement in thermal stability of soybean oil by blending with camellia oil during deep fat frying. European Journal of Lipid Science and Technology, 2016, 118, 524-531.	1.5	31
45	Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Industrial Crops and Products, 2016, 80, 141-147.	5.2	126
46	Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chemistry, 2016, 196, 910-916.	8.2	126
47	In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 2016, 21, 50-57.	3.4	76
48	Differential scanning calorimetry study—Assessing the influence of composition of vegetable oils on oxidation. Food Chemistry, 2016, 194, 601-607.	8.2	52
49	Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage. Food Chemistry, 2016, 192, 516-524.	8.2	80
50	Anthocyanins During Baking: Their Degradation Kinetics and Impacts on Color and Antioxidant Capacity of Bread. Food and Bioprocess Technology, 2015, 8, 983-994.	4.7	53
51	Relationship Between Surface Hydrophobicity and Structure of Soy Protein Isolate Subjected to Different Ionic Strength. International Journal of Food Properties, 2015, 18, 1059-1074.	3.0	122
52	Effect of Extruding Full-Fat Soy Flakes on Trans Fat Content. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	0
53	Heating Quality and Stability of Aqueous Enzymatic Extraction of Fatty Acid-Balanced Oil in Comparison with Other Blended Oils. Journal of Chemistry, 2014, 2014, 1-8.	1.9	6
54	Ultrasound-assisted aqueous enzymatic extraction of oil from perilla (<i>Perilla frutescens</i> L.) seeds. CYTA - Journal of Food, 2014, 12, 16-21.	1.9	35

#	Article	IF	CITATIONS
55	Immobilized alcalase alkaline protease on the magnetic chitosan nanoparticles used for soy protein isolate hydrolysis. European Food Research and Technology, 2014, 239, 1051-1059.	3.3	36
56	Optimization of Ethanolâ€Ultrasoundâ€Assisted Destabilization of a Cream Recovered from Enzymatic Extraction of Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 159-168.	1.9	15
57	Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 2014, 163, 163-170.	8.2	162
58	Monte Carlo modelling of non-isothermal degradation of two cyanidin-based anthocyanins in aqueous system at high temperatures and its impact on antioxidant capacities. Food Chemistry, 2014, 148, 342-350.	8.2	22
59	Blending of Soybean Oil with Selected Vegetable Oils: Impact on Oxidative Stability and Radical Scavenging Activity. Asian Pacific Journal of Cancer Prevention, 2014, 15, 2583-2589.	1.2	34
60	Simplexâ€Centroid Mixture Design Applied to the Aqueous Enzymatic Extraction of Fatty Acidâ€Balanced Oil from Mixed Seeds. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 349-357.	1.9	31
61	Optimization of the aqueous enzymatic extraction of pine kernel oil by response surface methodology. Procedia Engineering, 2011, 15, 4641-4652.	1.2	25
62	The study of ultrasonic-assisted aqueous enzymatic extraction of oil from peanut by response surface method. Procedia Engineering, 2011, 15, 4653-4660.	1.2	9
63	The study on extracting protein from hazelnut kernel by aqueous enzymatic extraction method. Procedia Engineering, 2011, 15, 4661-4672.	1.2	1
64	The research on extracting oil from watermelon seeds by aqueous enzymatic extraction method. Procedia Engineering, 2011, 15, 4673-4680.	1.2	22
65	Effect of Secondary Structure determined by FTIR Spectra on Surface Hydrophobicity of Soybean Protein Isolate. Procedia Engineering, 2011, 15, 4819-4827.	1.2	95
66	Extract dietary fiber from the soy pods by chemistry-enzymatic methods. Procedia Engineering, 2011, 15, 4862-4873.	1.2	17
67	Optimization on aqueous enzymatic extraction conditions of pine seed protein by response surface method. Procedia Engineering, 2011, 15, 4956-4966.	1.2	6
68	Ultrasound-Assisted Enzymatic Extraction of Dietary Fiber From Pods. Procedia Engineering, 2011, 15, 5056-5061.	1.2	8
69	Optimization of Extraction Process of Protein Isolate from Mung Bean. Procedia Engineering, 2011, 15, 5250-5258.	1.2	29
70	Antioxidant Activity of Soybean Peptides. Advanced Materials Research, 2011, 233-235, 854-865.	0.3	4
71	Effect of Succinylation on Aqueous Enzyme-Assisted Extraction of Oil from Soybean. Advanced Materials Research, 2011, 393-395, 696-703.	0.3	0
72	The Comparison of Oil Quality from Different Processes. Applied Mechanics and Materials, 0, 66-68, 598-607.	0.2	0

#	Article	IF	CITATIONS
73	The Research on Freeze-Thaw De-Emulsification Technology in Enzyme-Assisted Aqueous Extraction Processing. Advanced Materials Research, 0, 236-238, 2598-2609.	0.3	1
74	Separation of Antihypertensive Peptides Derived from Soybean Protein Isolated with Ultrafiltration Technology. Advanced Materials Research, 0, 468-471, 2931-2936.	0.3	0
75	Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties. CYTA - Journal of Food, 0, , 1-8.	1.9	10