
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935757/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review. International Journal of Environmental Science and Technology, 2022, 19, 5697-5720.	3.5	5
2	Irrigation of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity. Science of the Total Environment, 2022, 802, 149671.	8.0	15
3	Extraction of rare earth elements via electric field assisted mining applying deep eutectic solvents. Sustainable Chemistry and Pharmacy, 2022, 26, 100638.	3.3	0
4	Unveiling Chemical Cues of Insect-Tree and Insect-Insect Interactions for the Eucalyptus Weevil and Its Egg Parasitoid by Multidimensional Gas Chromatographic Methods. Molecules, 2022, 27, 4042.	3.8	1
5	Electrodialytic treatment of secondary mining resources for raw materials extraction: Reactor design assessment. Science of the Total Environment, 2021, 752, 141822.	8.0	6
6	Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. Journal of Hazardous Materials, 2021, 406, 124304.	12.4	11
7	Olfactory responses of Anaphes nitens (Hymenoptera, Mymaridae) to host and habitat cues. Journal of Applied Entomology, 2021, 145, 675-687.	1.8	1
8	Life Cycle Assessment of Electrodialytic Technologies to Recover Raw Materials from Mine Tailings. Sustainability, 2021, 13, 3915.	3.2	3
9	Identification of pheromone candidates for the eucalyptus weevil, <i>Gonipterus platensis</i> (Coleoptera, Curculionidae). Journal of Applied Entomology, 2020, 144, 41-53.	1.8	10
10	Electrodialytic removal of tungsten and arsenic from secondary mine resources — Deep eutectic solvents enhancement. Science of the Total Environment, 2020, 710, 136364.	8.0	38
11	Electrodialytic recovery of rare earth elements from coal ashes. Electrochimica Acta, 2020, 359, 136934.	5.2	24
12	Electrodialytic Hydrogen Production and Critical Raw Materials Recovery from Secondary Resources. Water (Switzerland), 2020, 12, 1262.	2.7	10
13	Emerging organic contaminants in soil irrigated with effluent: electrochemical technology as a remediation strategy. Science of the Total Environment, 2020, 743, 140544.	8.0	20
14	Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 2020, 247, 125758.	8.2	37
15	Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials, 2020, 10, 640.	4.1	20
16	Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters. Environmental Pollution, 2019, 253, 625-635.	7.5	26
17	Exploring hydrogen production for self-energy generation in electroremediation: A proof of concept. Applied Energy, 2019, 255, 113839.	10.1	14
18	Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors, 2019, 19, 5349.	3.8	14

#	Article	IF	CITATIONS
19	Electrophysiological and behavioural responses of the Eucalyptus weevil, Gonipterus platensis, to host plant volatiles. Journal of Pest Science, 2019, 92, 221-235.	3.7	13
20	Sustainability of construction materials: Electrodialytic technology as a tool for mortars production. Journal of Hazardous Materials, 2019, 363, 421-427.	12.4	10
21	Overview of electronic tongue sensing in environmental aqueous matrices: potential for monitoring emerging organic contaminants. Environmental Reviews, 2019, 27, 202-214.	4.5	29
22	Electro-technologies for the removal of 2,4,6-trichloroanisole from naturally contaminated cork discs: Reactor design and proof of concept. Chemical Engineering Journal, 2019, 361, 80-88.	12.7	3
23	Electrodialytic treatment of sewage sludge: influence on microbiological community. International Journal of Environmental Science and Technology, 2018, 15, 1103-1112.	3.5	4
24	Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides. Environmental Science and Pollution Research, 2018, 25, 35928-35935.	5.3	11
25	Electrodialytic 2-compartment cells for emerging organic contaminants removal from effluent. Journal of Hazardous Materials, 2018, 358, 467-474.	12.4	11
26	Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater. Environmental Science and Pollution Research, 2017, 24, 7208-7215.	5.3	8
27	Influence of the cell design in the electroremoval of PPCPs from soil slurry. Chemical Engineering Journal, 2017, 326, 162-168.	12.7	15
28	Phosphorus Recovery in Sewage Sludge by Electrokinetic Based Technologies: A Multivariate and Circular Economy View. Waste and Biomass Valorization, 2017, 8, 1587-1596.	3.4	10
29	Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 2016, 306, 1058-1066.	12.7	36
30	Electrically induced displacement transport of immiscible oil in saline sediments. Journal of Hazardous Materials, 2016, 313, 185-192.	12.4	21
31	Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source. Waste Management, 2016, 52, 193-201.	7.4	15
32	Electrochemical Process for Phosphorus Recovery from Wastewater Treatment Plants. , 2016, , 129-141.		0
33	Removal of Pharmaceutical and Personal Care Products in Aquatic Plant-Based Systems. , 2016, , 351-372.		0
34	Electrokinetically Enabled De-swelling of Clay. , 2016, , 43-56.		3
35	Electrochemical Process for Phosphorus Recovery from Water Treatment Plants. , 2016, , 113-128.		0
36	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. , 2015, , 81-161.		30

#	Article	IF	CITATIONS
37	Potential of the electrodialytic process for emerging organic contaminants remediation and phosphorus separation from sewage sludge. Electrochimica Acta, 2015, 181, 109-117.	5.2	30
38	ELECTRODIALYTIC PROCESS OF NANOFILTRATION CONCENTRATES – PHOSPHORUS RECOVERY AND MICROCYSTINS REMOVAL. Electrochimica Acta, 2015, 181, 200-207.	5.2	14
39	Insect – Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
40	Assessment of combined electro–nanoremediation of molinate contaminated soil. Science of the Total Environment, 2014, 493, 178-184.	8.0	30
41	Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere, 2014, 117, 124-131.	8.2	59
42	Phosphorus Recovery from a Water Reservoir–Potential of Nanofiltration Coupled to Electrodialytic Process. Waste and Biomass Valorization, 2013, 4, 675-681.	3.4	5
43	Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep.,) Tj ETQq1 1 0.784314	rgBT /Over 1.8	lock 10 Tf 50
44	Removal of organic contaminants from soils by an electrokinetic process: The case of molinate and bentazone. Experimental and modeling. Separation and Purification Technology, 2011, 79, 193-203.	7.9	64
45	Water stress affects Tomicus destruens host pine preference and performance during the shoot feeding phase. Annals of Forest Science, 2010, 67, 608-608.	2.0	14
46	Electrokinetic removal of creosote from treated timber waste: a comprehensive gas chromatographic view. Journal of Applied Electrochemistry, 2010, 40, 1183-1193.	2.9	15
47	Experimental and modeling of the electrodialytic and dialytic treatment of a fly ash containing Cd, Cu and Pb. Journal of Applied Electrochemistry, 2010, 40, 1689-1697.	2.9	10
48	Characterization of the volatile fraction emitted by Pinus spp. by one- and two-dimensional chromatographic techniques with mass spectrometric detection. Journal of Chromatography A, 2010, 1217, 1845-1855.	3.7	39
49	Application of biregressional designs to electrodialytic removal of heavy metals from contaminated matrices. Discussiones Mathematicae Probability and Statistics, 2010, 30, 123.	0.1	0
50	Qualitative mass spectrometric analysis of the volatile fraction of creosote-treated railway wood sleepers by using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2008, 1178, 215-222.	3.7	30
51	Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips. Chemosphere, 2007, 66, 1716-1726.	8.2	26
52	Diagnostic analysis of electrodialysis in mine tailing materials. Electrochimica Acta, 2007, 52, 3406-3411.	5.2	27
53	Characterization of the volatile fraction emitted by phloems of four pinus species by solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 2006, 1105, 191-198.	3.7	33
54	Biosorption of arsenic(V) with Lessonia nigrescens. Minerals Engineering, 2006, 19, 486-490.	4.3	143

#	Article	IF	CITATIONS
55	Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste: application to sawdust. Wood Science and Technology, 2005, 39, 291-309.	3.2	16
56	Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine Chemosphere, 2005, 59, 1229-1239.	8.2	105
57	Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I Journal of Hazardous Materials, 2004, 107, 103-113.	12.4	19
58	Differentiation of ten pine species from central portugal by monoterpene enantiomer-selective composition analysis using multidimensional gas chromatography. Chromatographia, 2001, 53, S412-S416.	1.3	17
59	Electrodialytic Removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste. Environmental Science & Technology, 2000, 34, 784-788.	10.0	114
60	Characterization of the physiological condition ofEucalyptus globulus labil by headspace HRGC analysis of the bouquet of odors. Journal of Separation Science, 1995, 7, 641-645.	1.0	1
61	Electrokinetic Removal of Herbicides from Soils. , 0, , 249-264.		Ο