
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accuracy of genomic selection in European maize elite breeding populations. Theoretical and Applied Genetics, 2012, 124, 769-776.	3.6	241
2	BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding. Sensors, 2013, 13, 2830-2847.	3.8	232
3	Mapping QTL for agronomic traits in breeding populations. Theoretical and Applied Genetics, 2012, 125, 201-210.	3.6	207
4	APETALA2Regulates the Stem Cell Niche in theArabidopsisShoot Meristem. Plant Cell, 2006, 18, 295-307.	6.6	184
5	Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15624-15629.	7.1	178
6	Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126, 1477-1486.	3.6	151
7	A modern Green Revolution gene for reduced height in wheat. Plant Journal, 2017, 92, 892-903.	5.7	150
8	Genetic Regulation of Embryonic Pattern Formation. Plant Cell, 2004, 16, S190-S202.	6.6	142
9	Flowering time control in European winter wheat. Frontiers in Plant Science, 2014, 5, 537.	3.6	129
10	Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theoretical and Applied Genetics, 2011, 123, 283-292.	3.6	124
11	Genetic architecture of male floral traits required for hybrid wheat breeding. Theoretical and Applied Genetics, 2016, 129, 2343-2357.	3.6	124
12	Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theoretical and Applied Genetics, 2018, 131, 2071-2084.	3.6	122
13	Association mapping for quality traits in soft winter wheat. Theoretical and Applied Genetics, 2011, 122, 961-970.	3.6	120
14	Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics, 2011, 12, 380.	2.8	113
15	Genomic selection in sugar beet breeding populations. BMC Genetics, 2013, 14, 85.	2.7	108
16	Genetic control of plant height in European winter wheat cultivars. Theoretical and Applied Genetics, 2015, 128, 865-874.	3.6	106
17	Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Scientific Reports, 2013, 3, 2442.	3.3	99
18	Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Scientific Reports, 2013, 3, 2129.	3.3	95

#	Article	IF	CITATIONS
19	Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Science, 2016, 56, 302-311.	1.8	94
20	Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics, 2015, 16, 96.	2.7	90
21	Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theoretical and Applied Genetics, 2018, 131, 1315-1329.	3.6	87
22	Wheat and the irritable bowel syndrome – FODMAP levels of modern and ancient species and their retention during bread making. Journal of Functional Foods, 2016, 25, 257-266.	3.4	85
23	Comparison of biometrical models for joint linkage association mapping. Heredity, 2012, 108, 332-340.	2.6	81
24	Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theoretical and Applied Genetics, 2015, 128, 1297-1306.	3.6	80
25	Lutein and Lutein Esters in Whole Grain Flours Made from 75 Genotypes of 5 <i>Triticum</i> Species Grown at Multiple Sites. Journal of Agricultural and Food Chemistry, 2015, 63, 5061-5071.	5.2	78
26	Identification of megaâ€environments in Europe and effect of allelic variation at maturity <i>E</i> loci on adaptation of European soybean. Plant, Cell and Environment, 2017, 40, 765-778.	5.7	78
27	Development of Heterotic Groups in Triticale. Crop Science, 2010, 50, 584-590.	1.8	76
28	Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics, 2020, 133, 2335-2342.	3.6	76
29	Mapping dynamic QTL for plant height in triticale. BMC Genetics, 2014, 15, 59.	2.7	73
30	Copy number variations of <i>CBF</i> genes at the <i>Frâ€A2</i> locus are essential components of winter hardiness in wheat. Plant Journal, 2017, 89, 764-773.	5.7	72
31	Genomic prediction of sunflower hybrid performance. Plant Breeding, 2013, 132, 107-114.	1.9	71
32	Association mapping for Fusarium head blight resistance in European soft winter wheat. Molecular Breeding, 2011, 28, 647-655.	2.1	70
33	Dissecting the genetic architecture of frost tolerance in Central European winter wheat. Journal of Experimental Botany, 2013, 64, 4453-4460.	4.8	69
34	Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theoretical and Applied Genetics, 2016, 129, 1901-1913.	3.6	69
35	Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity, 2014, 112, 552-561.	2.6	67
36	Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biology, 2012, 12, 109.	3.6	65

TOBIAS WüRSCHUM

4

#	Article	IF	CITATIONS
37	Back to the Future – Tapping into Ancient Grains for Food Diversity. Trends in Plant Science, 2016, 21, 731-737.	8.8	65
38	Genome-wide association mapping of agronomic traits in sugar beet. Theoretical and Applied Genetics, 2011, 123, 1121-1131.	3.6	63
39	High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theoretical and Applied Genetics, 2013, 126, 2563-2574.	3.6	63
40	<i>MGOUN1</i> Encodes an <i>Arabidopsis</i> Type IB DNA Topoisomerase Required in Stem Cell Regulation and to Maintain Developmentally Regulated Gene Silencing. Plant Cell, 2010, 22, 716-728.	6.6	61
41	Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theoretical and Applied Genetics, 2012, 125, 707-713.	3.6	61
42	Potential of genomic selection in rapeseed (<i><scp>B</scp>rassica napus</i> L.) breeding. Plant Breeding, 2014, 133, 45-51.	1.9	59
43	Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2012, 124, 153-161.	3.6	56
44	Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (<i><scp>T</scp>riticum aestivum</i> Â <scp>L</scp> .). Plant Breeding, 2014, 133, 433-441.	1.9	56
45	Genetic control of protein content and sedimentation volume in European winter wheat cultivars. Theoretical and Applied Genetics, 2016, 129, 1685-1696.	3.6	56
46	A threeâ€component system incorporating <scp><i>Ppdâ€D1</i></scp> , copy number variation at <scp><i>Ppdâ€B1</i></scp> , and numerous smallâ€effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. Plant, Cell and Environment, 2018, 41, 1407-1416.	5.7	56
47	A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theoretical and Applied Genetics, 2016, 129, 1231-1245.	3.6	52
48	Accuracy of within- and among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat. Theoretical and Applied Genetics, 2019, 132, 1121-1135.	3.6	50
49	Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Theoretical and Applied Genetics, 2016, 129, 1087-1097.	3.6	48
50	Association mapping in an elite maize breeding population. Theoretical and Applied Genetics, 2011, 123, 847-858.	3.6	47
51	Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics, 2011, 123, 109-118.	3.6	46
52	Multiple-line cross QTL mapping for biomass yield and plant height in triticale (× Triticosecale) Tj ETQq0 0 0 rg	3T /Overlo	ock 10 Tf 50 1 $\frac{46}{46}$
53	Higher grain yield and higher grain protein deviation underline the potential of hybrid wheat for a sustainable agriculture. Plant Breeding, 2018, 137, 326-337.	1.9	46

⁵⁴ Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population. Theoretical and Applied Genetics, 2019, 132, 489-500. 3.6 44

#	Article	IF	CITATIONS
55	Detection of QTL for flowering time in multiple families of elite maize. Theoretical and Applied Genetics, 2012, 125, 1539-1551.	3.6	42
56	Hybrid Breeding in Durum Wheat: Heterosis and Combining Ability. Crop Science, 2010, 50, 2224-2230.	1.8	41
57	Genetic dynamics underlying phenotypic development of biomass yield in triticale. BMC Genomics, 2014, 15, 458.	2.8	41
58	Lipophilic antioxidants in wheat (Triticum spp.): A target for breeding new varieties for future functional cereal products. Journal of Functional Foods, 2016, 20, 594-605.	3.4	41
59	Near-infrared reflectance spectroscopy for the rapid discrimination of kernels and flours of different wheat species. Journal of Food Composition and Analysis, 2016, 51, 30-36.	3.9	40
60	Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Science Advances, 2020, 6, eaay4897.	10.3	40
61	Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theoretical and Applied Genetics, 2010, 120, 291-299.	3.6	39
62	Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
63	Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits. Heredity, 2014, 112, 463-468.	2.6	36
64	Vitreosity, its stability and relationship to protein content in durum wheat. Journal of Cereal Science, 2015, 61, 71-77.	3.7	36
65	The soybean experiment â€~1000 Gardens': a case study of citizen science for research, education, and beyond. Theoretical and Applied Genetics, 2019, 132, 617-626.	3.6	35
66	Multipleâ€Line Cross Quantitative Trait Locus Mapping in European Elite Maize. Crop Science, 2011, 51, 2505-2516.	1.8	34
67	Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity, 2013, 110, 71-79.	2.6	34
68	Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theoretical and Applied Genetics, 2014, 127, 1635-1641.	3.6	34
69	Assessing the variation and genetic architecture of asparagine content in wheat: What can plant breeding contribute to a reduction in the acrylamide precursor?. Theoretical and Applied Genetics, 2018, 131, 2427-2437.	3.6	34
70	Best linear unbiased prediction of triticale hybrid performance. Euphytica, 2013, 191, 223-230.	1.2	33

71	Accuracy of within―and amongâ€family genomic prediction in triticale. Plant Breeding, 2017, 136, 230-236.	1.9	33
72	Alkylresorcinol composition allows the differentiation of Triticum spp. having different degrees of	3.7	32

ploidy. Journal of Cereal Science, 2015, 65, 244-251.

#	Article	IF	CITATIONS
73	Exploiting the Rht portfolio for hybrid wheat breeding. Theoretical and Applied Genetics, 2018, 131, 1433-1442.	3.6	32
74	Comparison of biometrical approaches for QTL detection in multiple segregating families. Theoretical and Applied Genetics, 2012, 125, 987-998.	3.6	31
75	Genetic variability, heritability and correlation among agronomic and disease resistance traits in a diversity panel and elite breeding material of spelt wheat. Plant Breeding, 2014, 133, 459-464.	1.9	30
76	Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theoretical and Applied Genetics, 2016, 129, 431-444.	3.6	30
77	Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genetics, 2019, 20, 64.	2.7	30
78	Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (x Triticosecale Wittmack). BMC Genomics, 2012, 13, 235.	2.8	28
79	Molecular genetic characterization of Central European soybean breeding germplasm. Plant Breeding, 2014, 133, 748-755.	1.9	27
80	Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (<i>×ÂTriticosecale</i> Wittmack). Plant Breeding, 2017, 136, 18-27.	1.9	27
81	Genome-Wide Association Study of Haploid Male Fertility in Maize (Zea Mays L.). Frontiers in Plant Science, 2018, 9, 974.	3.6	27
82	Adult Plant Development in Triticale (× <i>Triticosecale</i> Wittmack) Is Controlled by Dynamic Genetic Patterns of Regulation. G3: Genes, Genomes, Genetics, 2014, 4, 1585-1591.	1.8	26
83	Rht24 reduces height in the winter wheat population â€~SolitäÂ×ÂBussard' without adverse effects on Fusarium head blight infection. Theoretical and Applied Genetics, 2018, 131, 1263-1272.	3.6	26
84	Genetic basis of agronomically important traits in sugar beet (Beta vulgaris L.) investigated with joint linkage association mapping. Theoretical and Applied Genetics, 2010, 121, 1489-1499.	3.6	25
85	Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theoretical and Applied Genetics, 2017, 130, 1253-1266.	3.6	25
86	Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.). Scientific Reports, 2018, 8, 11025.	3.3	25
87	Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell, Tissue and Organ Culture, 2015, 122, 751-757.	2.3	24
88	The potential of genomicâ€assisted breeding to improve Fusarium head blight resistance in winter durum wheat. Plant Breeding, 2017, 136, 610-619.	1.9	24
89	Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight. BMC Genetics, 2012, 13, 14.	2.7	22
90	Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breeding, 2015, 134, 623-630.	1.9	22

#	Article	IF	CITATIONS
91	Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits. Euphytica, 2018, 214, 1.	1.2	22
92	Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breeding, 2013, 132, 99-106.	1.9	20
93	Phenotypic Analysis of Major Agronomic Traits in 1008 RILs from a Diallel of Early European Soybean Varieties. Crop Science, 2017, 57, 726-738.	1.8	20
94	Genomeâ€wide association mapping and genomic prediction of Fusarium head blight resistance, heading stage and plant height in winter rye (<i>Secale cereale</i>). Plant Breeding, 2020, 139, 508-520.	1.9	20
95	Spelt: Agronomy, Quality, and Flavor of Its Breads from 30 Varieties Tested across Multiple Environments. Crop Science, 2017, 57, 739.	1.8	19
96	Genetic Architecture of Winter Hardiness and Frost Tolerance in Triticale. PLoS ONE, 2014, 9, e99848.	2.5	18
97	Hybrid durum wheat: heterosis of grain yield and quality traits and genetic architecture of anther extrusion. Theoretical and Applied Genetics, 2019, 132, 921-932.	3.6	18
98	A QTL atlas for grain yield and its component traits in maize (<i>Zea mays</i>). Plant Breeding, 2020, 139, 562-574.	1.9	18
99	Molecular genetic characterization and association mapping in spelt wheat. Plant Breeding, 2017, 136, 214-223.	1.9	17
100	Genetic architecture of yellow and stem rust resistance in a durum wheat diversity panel. Euphytica, 2019, 215, 1.	1.2	17
101	Molecular tracking of multiple disease resistance in a winter wheat diversity panel. Theoretical and Applied Genetics, 2020, 133, 419-431.	3.6	17
102	Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet. Heredity, 2015, 114, 281-290.	2.6	16
103	Prediction of hybrid performance for Fusarium head blight resistance in triticale (×Triticosecale) Tj ETQq1 1 0.7	84314 rgB 1.2	ST /Overlock
104	Genome-wide association study for an efficient selection of Fusarium head blight resistance in winter triticale. Euphytica, 2019, 215, 1.	1.2	16
105	Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. Functional Plant Biology, 2020, 47, 675.	2.1	16
106	Evaluation of genomic approaches for markerâ€based improvement of lodging tolerance in triticale. Plant Breeding, 2015, 134, 416-422.	1.9	15
107	Multipleâ€line cross <scp>QTL</scp> mapping for grain yield and thousand kernel weight in triticale. Plant Breeding, 2016, 135, 567-573.	1.9	15
108	Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize. Frontiers in Plant Science, 2021, 12, 774478.	3.6	15

#	Article	IF	CITATIONS
109	Phenomic selection is competitive with genomic selection for breeding of complex traits. The Plant Phenome Journal, 2021, 4, .	2.0	15
110	Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat. Theoretical and Applied Genetics, 2014, 127, 2117-2126.	3.6	14
111	Potential for Marker-Assisted Simultaneous Improvement of Grain and Biomass Yield in Triticale. Bioenergy Research, 2017, 10, 449-455.	3.9	14
112	Molecular characterization of winter durum wheat (Triticum durum) based on a genotyping-by-sequencing approach. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 36-44.	0.8	14
113	Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genetics, 2017, 18, 49.	2.7	14
114	Can spelt wheat be used as heterotic group for hybrid wheat breeding?. Theoretical and Applied Genetics, 2018, 131, 973-984.	3.6	14
115	Genome-wide prediction in a hybrid maize population adapted to Northwest China. Crop Journal, 2020, 8, 830-842.	5.2	14
116	Influence of wheat variety and dough preparation on FODMAP content in yeast-leavened wheat breads. Journal of Cereal Science, 2020, 95, 103021.	3.7	14
117	Defeating the Warrior: genetic architecture of triticale resistance against a novel aggressive yellow rust race. Theoretical and Applied Genetics, 2017, 130, 685-696.	3.6	13
118	Longâ€ŧerm trends and genetic architecture of seed characteristics, grain yield and correlated agronomic traits in triticale (× Triticosecale Wittmack). Plant Breeding, 2020, 139, 717-729.	1.9	13
119	Remote Sensing of Maize Plant Height at Different Growth Stages Using UAV-Based Digital Surface Models (DSM). Agronomy, 2022, 12, 958.	3.0	13
120	Evaluation of a semi-controlled test as a selection tool for frost tolerance in durum wheat (Triticum) Tj ETQq0 0 () rgBT /Ov 1.9	erlock 10 Tf 5
121	High-resolution proteomics reveals differences in the proteome of spelt and bread wheat flour representing targets for research on wheat sensitivities. Scientific Reports, 2020, 10, 14677.	3.3	12
122	Misexpression of a transcriptional repressor candidate provides a molecular mechanism for the suppression of awns by Tipped 1 in wheat. Journal of Experimental Botany, 2020, 71, 3428-3436.	4.8	12
123	Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field. International Journal of Molecular Sciences, 2021, 22, 9311.	4.1	12
124	Stability of Adult-plant Resistance to Septoria tritici blotch in 24 European Winter Wheat Varieties Across Nine Field Environments. Journal of Phytopathology, 2011, 159, no-no.	1.0	11
125	Analysis of tofuâ€related traits by a benchâ€scale tofu production method and their relationship with agronomic traits in European soybean. Plant Breeding, 2018, 137, 271-282.	1.9	11
126	Cold stress tolerance of soybeans during flowering: QTL mapping and efficient selection strategies under controlled conditions. Plant Breeding, 2019, 138, 708-720.	1.9	11

#	Article	IF	CITATIONS
127	Refining the genetic architecture of flag leaf glaucousness in wheat. Theoretical and Applied Genetics, 2020, 133, 981-991.	3.6	11
128	Accession-specific modifiers act with ZWILLE/ARGONAUTE10 to maintain shoot meristem stem cells during embryogenesis in Arabidopsis. BMC Genomics, 2013, 14, 809.	2.8	10
129	Stress treatments influence efficiency of microspore embryogenesis and green plant regeneration in hexaploid triticale (× Triticosecale Wittmack L.). In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 143-148.	2.1	10
130	Development of Lipophilic Antioxidants and Chloroplasts during the Sprouting of Diverse <i>Triticum</i> spp Journal of Agricultural and Food Chemistry, 2016, 64, 913-922.	5.2	9
131	Natural Variation in Ovule Morphology Is Influenced by Multiple Tissues and Impacts Downstream Grain Development in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2019, 10, 1374.	3.6	9
132	Identification of seed protein and oil related QTL in 944 RILs from a diallel of early-maturing European soybean. Crop Journal, 2021, 9, 238-247.	5.2	9
133	The performance of phenomic selection depends on the genetic architecture of the target trait. Theoretical and Applied Genetics, 2022, 135, 653-665.	3.6	9
134	Unraveling the potential of phenomic selection within and among diverse breeding material of maize (<i>Zea mays</i> L.). G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	9
135	Optimizing the P balance: How do modern maize hybrids react to different starter fertilizers?. PLoS ONE, 2021, 16, e0250496.	2.5	8
136	Training set design in genomic prediction with multiple biparental families. Plant Genome, 2021, 14, e20124.	2.8	8
137	Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors. Theoretical and Applied Genetics, 2021, 134, 3427-3441.	3.6	8
138	Dissecting the phenotypic response of maize to low phosphorus soils by field screening of a large diversity panel. Euphytica, 2021, 217, 1.	1.2	8
139	Modern Field Phenotyping Opens New Avenues for Selection. , 2019, , 233-250.		7
140	Genetic architecture of phenotypic indices for simultaneous improvement of protein content and grain yield in triticale (× <i>triticosecale</i>). Plant Breeding, 2021, 140, 232-245.	1.9	7
141	Evaluation of the genetic architecture of tofu traits in soybean towards genomicsâ€assisted breeding. Plant Breeding, 2018, 137, 873-882.	1.9	6
142	Identification of QTL for seed yield and agronomic traits in 944 soybean (Glycine max) RILs from a diallel cross of earlyâ€maturing varieties. Plant Breeding, 2021, 140, 254-266.	1.9	6
143	Evaluation of the genetic architecture and the potential of genomics-assisted breeding of quality traits in two large panels of durum wheat. Theoretical and Applied Genetics, 2019, 132, 1873-1886.	3.6	5
144	Location and Variety but Not Phosphate Starter Fertilization Influence the Profiles of Fatty Acids, Carotenoids, and Tocochromanols in Kernels of Modern Corn (<i>Zea mays</i> L.) Hybrids Cultivated in Germany. Journal of Agricultural and Food Chemistry, 2021, 69, 2845-2854.	5.2	5

#	Article	IF	CITATIONS
145	Identification and Fine-Mapping of Quantitative Trait Loci Controlling Plant Height in Central European Winter Triticale (A—Triticosecale Wittmack). Plants, 2021, 10, 1592.	3.5	5
146	Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits. Theoretical and Applied Genetics, 2021, 134, 4025-4042.	3.6	5
147	High-resolution association mapping with libraries of immortalized lines from ancestral landraces. Theoretical and Applied Genetics, 2022, 135, 243-256.	3.6	5
148	Exploitation of Elite Maize (<i>Zea mays</i> L.) Germplasm across Maturity Zones. Crop Science, 2012, 52, 1534-1542.	1.8	4
149	Genetic Architecture of Cereal Leaf Beetle Resistance in Wheat. Plants, 2020, 9, 1117.	3.5	4
150	Genome-wide association study for deoxynivalenol production and aggressiveness in wheat and rye head blight by resequencing 92 isolates of Fusarium culmorum. BMC Genomics, 2021, 22, 630.	2.8	4
151	Multiple-line cross quantitative trait locus mapping in sugar beet (Beta vulgaris L.). Molecular Breeding, 2013, 31, 279-287.	2.1	3
152	Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale?. Theoretical and Applied Genetics, 2022, 135, 993-1009.	3.6	3
153	Inheritance of Sclerotinia Midstalk Rot Resistance in Elite Sunflower Breeding Germplasm. Helia, 2014, 37, .	0.4	2
154	Fastâ€ŧracking the evaluation of novel female candidate lines in CMSâ€based hybrid breeding. Plant Breeding, 2021, 140, 432-441.	1.9	1
155	Hybrid breeding for biomass yield in winter triticale: II. Combining ability and hybrid prediction. Plant Breeding, 2020, 139, 906-915.	1.9	0