Tsutomu Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935653/publications.pdf

Version: 2024-02-01

81900 4,884 148 39 citations h-index papers

g-index 169 169 169 4570 docs citations times ranked citing authors all docs

123424

61

#	Article	IF	CITATIONS
1	Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 2010, 85, 413-423.	3.6	235
2	Siteâ€Specific Protein Modification on Living Cells Catalyzed by Sortase. ChemBioChem, 2008, 9, 802-807.	2.6	151
3	Cocktail Î-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 2010, 9, 32.	4.0	145
4	Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88, 381-388.	3.6	135
5	Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing \hat{l} ±-amylase and lysine decarboxylase. Applied Microbiology and Biotechnology, 2009, 82, 115-121.	3.6	125
6	Recent developments in yeast cell surface display toward extended applications in biotechnology. Applied Microbiology and Biotechnology, 2012, 95, 577-591.	3.6	115
7	Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiaewith optimized cellulase expression. Biotechnology for Biofuels, 2011, 4, 8.	6.2	112
8	Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme and Microbial Technology, 2008, 43, 115-119.	3.2	110
9	Efficient Production of Optically Pure <scp>d</scp> -Lactic Acid from Raw Corn Starch by Using a Genetically Modified <scp>l</scp> -Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting <i>Lactobacillus plantarum</i> Strain. Applied and Environmental Microbiology, 2009, 75, 462-467.	3.1	96
10	A Simple and Immediate Method for Simultaneously Evaluating Expression Level and Plasmid Maintenance in Yeast. Journal of Biochemistry, 2009, 145, 701-708.	1.7	90
11	Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme and Microbial Technology, 2015, 72, 16-24.	3.2	88
12	Improved Production of Homo- <scp>d</scp> -Lactic Acid via Xylose Fermentation by Introduction of Xylose Assimilation Genes and Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in <scp>l</scp> -Lactate Dehydrogenase Gene-Deficient <i>Lactobacillus plantarum</i> Applied and Environmental Microbiology, 2009, 75, 7858-7861.	3.1	84
13	Novel strategy for yeast construction using $\hat{\Gamma}$ -integration and cell fusion to efficiently produce ethanol from raw starch. Applied Microbiology and Biotechnology, 2010, 85, 1491-1498.	3.6	83
14	Ethanol production from cellulosic materials using cellulaseâ€expressing yeast. Biotechnology Journal, 2010, 5, 449-455.	3.5	75
15	Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresource Technology, 2015, 187, 167-172.	9.6	73
16	N-terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase. FEBS Letters, 2005, 579, 2092-2096.	2.8	72
17	Homo- <scp>d</scp> -Lactic Acid Fermentation from Arabinose by Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in <scp>l</scp> -Lactate Dehydrogenase Gene-Deficient <i>Lactobacillus plantarum</i> Applied and Environmental Microbiology, 2009, 75, 5175-5178.	3.1	68
18	Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 2016, 11, 91.	2.7	67

#	Article	IF	CITATIONS
19	Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2016, 100, 279-288.	3.6	62
20	Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucoseâ€"xylose co-substrate. Nature Communications, 2020, 11, 279.	12.8	60
21	Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 28-34.	4.7	57
22	Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. Journal of Bioscience and Bioengineering, 2012, 114, 80-85.	2.2	54
23	Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnology Advances, 2015, 33, 1403-1411.	11.7	53
24	Peptidyl Linkers for Protein Heterodimerization Catalyzed by Microbial Transglutaminase. Bioconjugate Chemistry, 2004, 15, 491-497.	3.6	52
25	Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme and Microbial Technology, 2012, 50, 343-347.	3.2	51
26	S-Peptide as a Potent Peptidyl Linker for Protein Cross-Linking by Microbial Transglutaminase from Streptomyces mobaraensis. Bioconjugate Chemistry, 2003, 14, 351-357.	3.6	50
27	Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of \hat{I}^2 -glucosidase on its cell surface. Enzyme and Microbial Technology, 2008, 43, 233-236.	3.2	50
28	Glutamate production from \hat{l}^2 -glucan using endoglucanase-secreting Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2011, 90, 895-901.	3.6	50
29	Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Applied Microbiology and Biotechnology, 2013, 97, 7165-7172.	3.6	50
30	Engineering metabolic pathways in Escherichia coli for constructing a "microbial chassis―for biochemical production. Bioresource Technology, 2017, 245, 1362-1368.	9.6	50
31	Regulation of the Display Ratio of Enzymes on the Saccharomyces cerevisiae Cell Surface by the Immunoglobulin G and Cellulosomal Enzyme Binding Domains. Applied and Environmental Microbiology, 2009, 75, 4149-4154.	3.1	48
32	d-lactic acid production from cellooligosaccharides and \hat{l}^2 -glucan using l-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2010, 85, 643-650.	3.6	48
33	Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2011, 92, 67-76.	3.6	47
34	Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 643-648.	3.0	45
35	Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme and Microbial Technology, 2009, 44, 344-349.	3.2	44
36	Intramolecular electron transfer in a cytochrome P450cam system with a site-specific branched structure. Protein Engineering, Design and Selection, 2007, 20, 453-459.	2.1	43

#	Article	IF	CITATIONS
37	<scp>d</scp> ″actic acid production from renewable lignocellulosic biomass via genetically modified <i>Lactobacillus plantarum</i> . Biotechnology Progress, 2016, 32, 271-278.	2.6	43
38	System Using Tandem Repeats of the cA Peptidoglycan-Binding Domain from <i>Lactococcus lactis</i> for Display of both N- and C-Terminal Fusions on Cell Surfaces of Lactic Acid Bacteria. Applied and Environmental Microbiology, 2008, 74, 1117-1123.	3.1	42
39	Gene copy number and polyploidy on products formation in yeast. Applied Microbiology and Biotechnology, 2010, 88, 849-857.	3.6	41
40	Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme and Microbial Technology, 2011, 48, 393-396.	3.2	40
41	A DNA–gold nanoparticle hybrid hydrogel network prepared by enzymatic reaction. Chemical Communications, 2017, 53, 5802-5805.	4.1	40
42	Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein ligation. Chemical Communications, 2007, , 4995.	4.1	39
43	Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. Journal of Bioscience and Bioengineering, 2013, 115, 12-14.	2.2	39
44	Specific Protein Delivery to Target Cells by Antibody-displaying Bionanocapsules. Journal of Biochemistry, 2008, 144, 701-707.	1.7	38
45	1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface. Bioresource Technology, 2017, 245, 1684-1691.	9.6	38
46	Development of novel cell surface display in Corynebacterium glutamicum using porin. Applied Microbiology and Biotechnology, 2009, 84, 733-739.	3.6	37
47	Creation of a Cellooligosaccharide-Assimilating Escherichia coli Strain by Displaying Active Beta-Glucosidase on the Cell Surface via a Novel Anchor Protein. Applied and Environmental Microbiology, 2011, 77, 6265-6270.	3.1	36
48	Metabolic engineering of <i>E. coli</i> for improving mevalonate production to promote NADPH regeneration and enhance acetylâ€CoA supply. Biotechnology and Bioengineering, 2020, 117, 2153-2164.	3.3	36
49	Site-specific cross-linking of functional proteins by transglutamination. Enzyme and Microbial Technology, 2003, 33, 492-496.	3.2	34
50	Improvement of isoflavone aglycones production using \hat{l}^2 -glucosidase secretory produced in recombinant Aspergillus oryzae. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 297-301.	1.8	34
51	Over-production of various secretory-form proteins in Streptomyces lividans. Protein Expression and Purification, 2010, 73, 198-202.	1.3	33
52	Metabolic Engineering of <i>Lactobacillus plantarum</i> for Direct <scp>l</scp> â€Lactic Acid Production From Raw Corn Starch. Biotechnology Journal, 2018, 13, e1700517.	3.5	33
53	Yeast-Based Fluorescence Reporter Assay of G Protein-coupled Receptor Signalling for Flow Cytometric Screening: FAR1-Disruption Recovers Loss of Episomal Plasmid Caused by Signalling in Yeast. Journal of Biochemistry, 2008, 143, 667-674.	1.7	32
54	Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata. Bioresource Technology, 2013, 142, 523-529.	9.6	32

#	Article	IF	CITATIONS
55	Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome. Chemical Communications, 2013, 49, 6971.	4.1	32
56	Production of optically pure d-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2017, 101, 1869-1875.	3.6	32
57	Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Applied Microbiology and Biotechnology, 2011, 91, 1537-1544.	3.6	31
58	Direct cadaverine production from cellobiose using \hat{l}^2 -glucosidase displaying Escherichia coli. AMB Express, 2013, 3, 67.	3.0	31
59	Utilization of Lactic Acid Bacterial Genes in <i>Synechocystis </i> sp. PCC 6803 in the Production of Lactic Acid. Bioscience, Biotechnology and Biochemistry, 2013, 77, 966-970.	1.3	31
60	Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Bioresource Technology, 2015, 185, 158-164.	9.6	31
61	Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe. Microbial Cell Factories, 2018, 17, 176.	4.0	31
62	Enzyme-Mediated Site-Specific Antibodyâ^'Protein Modification Using a ZZ Domain as a Linker. Bioconjugate Chemistry, 2010, 21, 2227-2233.	3.6	30
63	p-Hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Microbial Cell Factories, 2013, 12, 45.	4.0	30
64	Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Applied Microbiology and Biotechnology, 2010, 87, 1975-1982.	3.6	29
65	Biofunctional TiO2 nanoparticle-mediated photokilling of cancer cells using UV irradiation. MedChemComm, 2010, 1, 209.	3.4	29
66	Particle size for photocatalytic activity of anatase TiO2 nanosheets with highly exposed {001} facets. RSC Advances, 2013, 3, 19268.	3.6	29
67	Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Applied Microbiology and Biotechnology, 2010, 87, 109-115.	3.6	28
68	Benzoic acid fermentation from starch and cellulose via a plant-like \hat{l}^2 -oxidation pathway in Streptomyces maritimus. Microbial Cell Factories, 2012, 11, 49.	4.0	28
69	Protein–protein interactions and selection: yeastâ€based approaches that exploit guanine nucleotideâ€binding protein signaling. FEBS Journal, 2010, 277, 1982-1995.	4.7	27
70	Sortase A-Catalyzed Site-Specific Coimmobilization on Microparticles via Streptavidin. Langmuir, 2012, 28, 3553-3557.	3.5	27
71	Metabolic engineering to improve $1,5$ â \in diaminopentane production from cellobiose using \hat{l}^2 â \in glucosidaseâ \in secreting $<$ i $>>$ Corynebacterium glutamicum $<$ li $>>$. Biotechnology and Bioengineering, 2019, 116, 2640-2651.	3.3	27
72	Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase-expressing fungus immobilized whole-cell biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 101-104.	1.8	26

#	Article	IF	Citations
73	Control of signalling properties of human somatostatin receptor subtype-5 by additional signal sequences on its amino-terminus in yeast. Journal of Biochemistry, 2010, 147, 875-884.	1.7	26
74	Enzymeâ€mediated methodologies for protein modification and bioconjugate synthesis. Biotechnology Journal, 2012, 7, 1137-1146.	3.5	26
75	Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources. Bioresource Technology, 2012, 104, 648-651.	9.6	26
76	Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express, 2013, 3, 72.	3.0	25
77	Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metabolic Engineering Communications, 2017, 5, 60-67.	3.6	24
78	Importance of asparagine residues at positions 13 and 26 on the amino-terminal domain of human somatostatin receptor subtype-5 in signalling. Journal of Biochemistry, 2010, 147, 867-873.	1.7	23
79	Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Applied Microbiology and Biotechnology, 2012, 96, 81-88.	3.6	23
80	Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module. Applied Microbiology and Biotechnology, 2010, 87, 1783-1789.	3.6	22
81	Affibody-displaying bionanocapsules for specific drug delivery to HER2-expressing cancer cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5726-5731.	2.2	22
82	Synergistic degradation of arabinoxylan by free and immobilized xylanases and arabinofuranosidase. Biochemical Engineering Journal, 2016, 114, 268-275.	3.6	22
83	Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode. New Biotechnology, 2013, 30, 531-535.	4.4	20
84	Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata. Enzyme and Microbial Technology, 2016, 89, 63-68.	3.2	20
85	Siteâ€specific protein labeling with amineâ€containing molecules using <i>Lactobacillus plantarum</i> sortase. Biotechnology Journal, 2012, 7, 642-648.	3.5	19
86	Two-step production of d-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Applied Microbiology and Biotechnology, 2014, 98, 4911-4918.	3.6	19
87	Cell-surface display of enzymes by the yeast <i>Saccharomyces cerevisiae</i> for synthetic biology. FEMS Yeast Research, 2014, 15, n/a-n/a.	2.3	19
88	Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both \hat{l}^2 -glucosidase and \hat{l}^2 -xylosidase. Applied Microbiology and Biotechnology, 2011, 91, 1553-1559.	3.6	18
89	Site-specific tetrameric streptavidin-protein conjugation using sortase A. Journal of Biotechnology, 2011, 152, 37-42.	3.8	18
90	Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. Biosensors and Bioelectronics, 2018, 99, 56-61.	10.1	18

#	Article	IF	Citations
91	4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Bioresource Technology, 2015, 180, 59-65.	9.6	17
92	Muconic Acid Production Using Gene-Level Fusion Proteins in <i>Escherichia coli</i> ACS Synthetic Biology, 2018, 7, 2698-2705.	3.8	17
93	Risk factor analysis for adverse events and stent dysfunction of endoscopic ultrasoundâ€guided choledochoduodenostomy. Digestive Endoscopy, 2020, 32, 957-966.	2.3	17
94	Breeding of Industrial Diploid Yeast Strain with Chromosomal Integration of Multiple \hat{l}^2 -Glucosidase Genes. Journal of Bioscience and Bioengineering, 2008, 106, 594-597.	2.2	16
95	Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities. Frontiers in Bioengineering and Biotechnology, 2020, 8, 569406.	4.1	16
96	Risks of transesophageal endoscopic ultrasonography-guided biliary drainage. Gastrointestinal Intervention, 2017, 6, 82-84.	0.1	16
97	Biotinylated Bionanocapsules for Displaying Diverse Ligands Toward Cell-specific Delivery. Journal of Biochemistry, 2009, 146, 867-874.	1.7	15
98	Construction of a novel detection system for protein–protein interactions using yeast Gâ€protein signaling. FEBS Journal, 2009, 276, 2636-2644.	4.7	15
99	Creation of Cellobiose and Xylooligosaccharides-Coutilizing <i>Escherichia coli</i> Displaying both \hat{l}^2 -Glucosidase and \hat{l}^2 -Xylosidase on Its Cell Surface. ACS Synthetic Biology, 2014, 3, 446-453.	3.8	15
100	Outcomes of EUS-FNA in patients receiving antithrombotic therapy. Endoscopy International Open, 2019, 07, E15-E25.	1.8	14
101	Construction of arginine-rich peptide displaying bionanocapsules. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1473-1476.	2.2	13
102	Displaying non-natural, functional molecules on yeast surfaces via biotin–streptavidin interaction. Journal of Biotechnology, 2010, 145, 79-83.	3.8	13
103	Preparation of affinity membranes using thermally induced phase separation for one-step purification of recombinant proteins. Analytical Biochemistry, 2013, 434, 269-274.	2.4	13
104	Fatty acid production from butter using novel cutinase-displaying yeast. Enzyme and Microbial Technology, 2010, 46, 194-199.	3.2	12
105	Applications of Yeast Cell-Surface Display in Bio-Refinery. Recent Patents on Biotechnology, 2010, 4, 226-234.	0.8	12
106	Câ€Terminalâ€oriented Immobilization of Enzymes Using Sortase Aâ€mediated Technique. Macromolecular Bioscience, 2015, 15, 1375-1380.	4.1	12
107	Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697. Enzyme and Microbial Technology, 2015, 68, 10-14.	3.2	12
108	Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. Journal of Bioscience and Bioengineering, 2016, 122, 730-735.	2.2	12

#	Article	IF	CITATIONS
109	Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresource Technology, 2021, 329, 124858.	9.6	12
110	Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009, 83, 783-789.	3.6	11
111	The competitorâ€introduced G γ recruitment system, a new approach for screening affinityâ€enhanced proteins. FEBS Journal, 2010, 277, 1704-1712.	4.7	11
112	Sortase A-Mediated Metabolic Enzyme Ligation in <i>Escherichia coli</i> . ACS Synthetic Biology, 2016, 5, 1284-1289.	3.8	11
113	High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochemical Engineering Journal, 2013, 74, 76-80.	3.6	10
114	Twoâ€Stage Oxidation of Glucose by an Enzymatic Bioanode. Fuel Cells, 2013, 13, 960-964.	2.4	9
115	2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis. Applied Microbiology and Biotechnology, 2016, 100, 5781-5789.	3.6	9
116	Rapid and Efficient Selection of Yeast Displaying a Target Protein Using Thermoâ€responsive Magnetic Nanoparticles. Biotechnology Progress, 2008, 24, 352-357.	2.6	8
117	Development of an enzyme activity screening system for \hat{l}^2 -glucosidase-displaying yeasts using calcium alginate micro-beads and flow sorting. Applied Microbiology and Biotechnology, 2009, 84, 375-382.	3.6	8
118	Twigged streptavidin polymer as a scaffold for protein assembly. Journal of Biotechnology, 2016, 225, 61-66.	3.8	8
119	4-Vinylphenol production from glucose using recombinant Streptomyces mobaraense expressing a tyrosine ammonia lyase from Rhodobacter sphaeroides. Biotechnology Letters, 2016, 38, 1543-1549.	2.2	8
120	Outcomes of Endoscopic Ultrasound-Guided Biliary Drainage in Patients Undergoing Antithrombotic Therapy. Clinical Endoscopy, 2021, 54, 596-602.	1.5	8
121	Task-specific membranes for the isolation of recombinant proteins with peptide tags. RSC Advances, 2012, 2, 125-127.	3.6	7
122	Display of active beta-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Applied Microbiology and Biotechnology, 2013, 97, 4343-4352.	3.6	6
123	Preparation of hemispherical polymer particles via phase separation induced by microsuspension polymerization. Colloid and Polymer Science, 2013, 291, 71-76.	2.1	6
124	Preparation of affinity membranes using polymer phase separation and azido-containing surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125802.	4.7	6
125	<scp> </scp> â€Lactate oxidaseâ€mediated removal of <scp> </scp> â€lactic acid derived from fermentation medium for the production of optically pure Dâ€lactic acid. Biotechnology Journal, 2022, 17, e2100331.	3.5	6
126	Casein-based scaffold for artificial cellulosome design. Process Biochemistry, 2018, 66, 140-145.	3.7	5

#	Article	IF	Citations
127	Reprogramming Escherichia coli pyruvate-forming reaction towards chorismate derivatives production. Metabolic Engineering, 2021, 67, 1-10.	7.0	5
128	Evaluation of cell surface-displayed protein stability against simulated gastric fluid. Biotechnology Letters, 2009, 31, 1259-1264.	2.2	4
129	Protein-encapsulated bio-nanocapsules production with ER membrane localization sequences. Journal of Biotechnology, 2012, 157, 124-129.	3.8	4
130	Hyper secretion of Thermobifida fusca \hat{l}^2 -glucosidase via a Tat-dependent signal peptide using Streptomyces lividans. Microbial Cell Factories, 2013, 12, 88.	4.0	4
131	Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host. Microbial Cell Factories, 2015, 14, 5.	4.0	4
132	B2 puncture with forward-viewing EUS simplifies EUS-guided hepaticogastrostomy (with video). Endoscopic Ultrasound, 2022, .	1.5	4
133	Sortase A-Assisted Metabolic Enzyme Ligation in Escherichia coli for Enhancing Metabolic Flux. Methods in Molecular Biology, 2018, 1772, 125-136.	0.9	3
134	G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metabolic Engineering, 2022, 72, 68-81.	7.0	3
135	Creation of endoglucanase-secreting Streptomyces lividans for enzyme production using cellulose as the carbon source. Applied Microbiology and Biotechnology, 2013, 97, 5711-5720.	3.6	2
136	The effect of combining signal sequences with the N28 fragment on GFP production in Aspergillus oryzae. Process Biochemistry, 2014, 49, 1078-1083.	3.7	2
137	n-Butylamine production from glucose using a transaminase-mediated synthetic pathway in Escherichia coli. Journal of Bioscience and Bioengineering, 2020, 129, 99-103.	2.2	2
138	A high-level expression vector containing selectable marker for continuous production of recombinant protein in insect cells. Biotechnology Letters, 2009, 31, 623-627.	2.2	1
139	Affibody displaying bionanocapsules for HER2 specific drug delivery. Journal of Bioscience and Bioengineering, 2009, 108, S27.	2.2	0
140	Efficient ethanol production from xylose by mated diploid Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2009, 108, S49.	2.2	0
141	Integrated and energy-saving biodiesel fuel production using fungus whole-cell biocatalyst. Journal of Bioscience and Bioengineering, 2009, 108, S50-S51.	2.2	0
142	Direct fermentation of cellulosic materials to ethanol using yeast strains codisplaying three types of cellulolytic enzyme. Journal of Bioscience and Bioengineering, 2009, 108, S52.	2.2	0
143	Site-specific protein modification with functional molecule using novel enzyme. Journal of Bioscience and Bioengineering, 2009, 108, S107-S108.	2.2	0
144	Functional analysis of mutant human somatostatin receptor using a yeast-based fluorescence reporter assay. Journal of Bioscience and Bioengineering, 2009, 108, S108.	2.2	0

TSUTOMU TANAKA

#	Article	IF	CITATIONS
145	Expression and signaling analyses of human G protein-coupled receptor in yeast. Journal of Bioscience and Bioengineering, 2009, 108, S164.	2.2	O
146	Aromatic chemicals production using phenylalnine ammonia lyase expressing Streptomyces lividans. , $2011, , .$		0
147	Benzoic acid fermentation from starch and cellulose via a plant-like \hat{l}^2 -oxidation pathway in Streptomyces maritimus. New Biotechnology, 2012, 29, S50.	4.4	O
148	Putrescine production from cellobiose by cell surface- and metabolically-engineered E. coli. New Biotechnology, 2016, 33, S191.	4.4	0