Mirella Giovarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Delivery and Translational Research, 2022, 12, 2007-2018.	5.8	8
2	Macrophages expressing TREM-1 are involved in the progression of HPV16-related oropharyngeal squamous cell carcinoma. Annals of Medicine, 2021, 53, 541-550.	3.8	3
3	Low Levels of Urinary PSA Better Identify Prostate Cancer Patients. Cancers, 2021, 13, 3570.	3.7	9
4	Phage-Based Anti-HER2 Vaccination Can Circumvent Immune Tolerance against Breast Cancer. Cancer Immunology Research, 2018, 6, 1486-1498.	3.4	25
5	Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells <i>in vitro</i> and <i>in vivo</i> on orthotopic xenograft tumors. Drug Delivery, 2017, 24, 670-680.	5.7	41
6	Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Frontiers in Immunology, 2017, 8, 1097.	4.8	208
7	<i>In Vitro</i> and <i>In Vivo</i> Therapeutic Evaluation of Camptothecin-Encapsulated <i>I²</i> -Cyclodextrin Nanosponges in Prostate Cancer. Journal of Biomedical Nanotechnology, 2016, 12, 114-127.	1.1	67
8	Regulation of Langerhans cell functions in a hypoxic environment. Journal of Molecular Medicine, 2016, 94, 943-955.	3.9	10
9	Anti-α-enolase antibody limits the invasion of myeloid-derived suppressor cells and attenuates their restraining effector T cell response. Oncolmmunology, 2016, 5, e1112940.	4.6	19
10	Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia, 2016, 59, 325-333.	6.3	139
11	Class II Transactivator-Induced MHC Class II Expression in Pancreatic Cancer Cells Leads to Tumor Rejection and a Specific Antitumor Memory Response. Pancreas, 2014, 43, 1066-1072.	1.1	14
12	Chimeric Rat/Human HER2 Efficiently Circumvents HER2 Tolerance in Cancer Patients. Clinical Cancer Research, 2014, 20, 2910-2921.	7.0	24
13	Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia, 2014, 57, 1664-1673.	6.3	119
14	B7h Triggering Inhibits the Migration of Tumor Cell Lines. Journal of Immunology, 2014, 192, 4921-4931.	0.8	40
15	Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and <scp>TREM</scp> â€1 expression. European Journal of Immunology, 2013, 43, 949-966.	2.9	49
16	Vaccination With ENO1 DNA Prolongs Survival of Genetically Engineered Mice With Pancreatic Cancer. Gastroenterology, 2013, 144, 1098-1106.	1.3	104
17	Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. Journal of Hematology and Oncology, 2013, 6, 67.	17.0	42
18	The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology, 2013, 218, 76-89.	1.9	59

#	Article	IF	CITATIONS
19	Triggering of B7h by the ICOS Modulates Maturation and Migration of Monocyte-Derived Dendritic Cells. Journal of Immunology, 2013, 190, 1125-1134.	0.8	28
20	Pro-Inflammatory Profile of Preeclamptic Placental Mesenchymal Stromal Cells: New Insights into the Etiopathogenesis of Preeclampsia. PLoS ONE, 2013, 8, e59403.	2.5	59
21	Circulating Autoantibodies to Phosphorylated α-Enolase are a Hallmark of Pancreatic Cancer. Journal of Proteome Research, 2011, 10, 105-112.	3.7	119
22	Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood, 2011, 117, 2625-2639.	1.4	119
23	The interferonâ€inducible gene IFI16 secretome of endothelial cells drives the early steps of the inflammatory response. European Journal of Immunology, 2010, 40, 2182-2189.	2.9	32
24	Expression of IFNÎ ³ R2 mutated in a dileucine internalization motif reinstates IFNÎ ³ signaling and apoptosis in human T lymphocytes. Immunology Letters, 2010, 134, 17-25.	2.5	12
25	Human Mesenchymal Stem Cells Modulate Cellular Immune Response to Islet Antigen Glutamic Acid Decarboxylase in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3788-3797.	3.6	41
26	The proapoptotic activity of the Interferon-inducible gene IFI16 provides new insights into its etiopathogenetic role in autoimmunity. Journal of Autoimmunity, 2010, 35, 114-123.	6.5	41
27	Survival and Migration of Human Dendritic Cells Are Regulated by an IFN-α-Inducible Axl/Gas6 Pathway. Journal of Immunology, 2009, 183, 3004-3013.	0.8	78
28	An integrated humoral and cellular response is elicited in pancreatic cancer by αâ€enolase, a novel pancreatic ductal adenocarcinomaâ€associated antigen. International Journal of Cancer, 2009, 125, 639-648.	5.1	115
29	Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology, 2008, 213, 733-749.	1.9	138
30	Sulfated K5 <i>Escherichia coli</i> Polysaccharide Derivatives as Wide-Range Inhibitors of Genital Types of Human Papillomavirus. Antimicrobial Agents and Chemotherapy, 2008, 52, 1374-1381.	3.2	43
31	Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. Journal of Leukocyte Biology, 2008, 84, 1472-1482.	3.3	88
32	Transcriptome of Hypoxic Immature Dendritic Cells: Modulation of Chemokine/Receptor Expression. Molecular Cancer Research, 2008, 6, 175-185.	3.4	94
33	Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB Journal, 2008, 22, 2747-2757.	0.5	120
34	Lack of Plasma Protein Hemopexin Dampens Mercury-Induced Autoimmune Response in Mice. Journal of Immunology, 2008, 181, 1937-1947.	0.8	15
35	Activin A Induces Langerhans Cell Differentiation In Vitro and in Human Skin Explants. PLoS ONE, 2008, 3, e3271.	2.5	41
36	Production and function of activin A in human dendritic cells. European Cytokine Network, 2008, 19, 60-8.	2.0	36

#	Article	IF	CITATIONS
37	In the absence of IGF-1 signaling, IFN-Î ³ suppresses human malignant T-cell growth. Blood, 2007, 109, 2496-2504.	1.4	20
38	Autoantibody Signature in Human Ductal Pancreatic Adenocarcinoma. Journal of Proteome Research, 2007, 6, 4025-4031.	3.7	88
39	Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood, 2006, 107, 454-462.	1.4	65
40	CC-Chemokine Ligand 16 Induces a Novel Maturation Program in Human Immature Monocyte-Derived Dendritic Cells. Journal of Immunology, 2006, 177, 6143-6151.	0.8	21
41	Iron regulates T-lymphocyte sensitivity to the IFN-γ/STAT1 signaling pathway in vitro and in vivo. Blood, 2005, 105, 3214-3221.	1.4	40
42	Immunological mechanisms elicited at the tumour site by lymphocyte activation gene-3 (LAG-3) versus IL-12: sharing a common Th1 anti-tumour immune pathway. Journal of Pathology, 2005, 205, 82-91.	4.5	39
43	Intralesional Injection of Adenovirus Encoding CC Chemokine Ligand 16 Inhibits Mammary Tumor Growth and Prevents Metastatic-Induced Death after Surgical Removal of the Treated Primary Tumor. Journal of Immunology, 2004, 172, 4026-4036.	0.8	38
44	CCL16/LEC powerfully triggers effector and antigen-presenting functions of macrophages and enhances T cell cytotoxicity. Journal of Leukocyte Biology, 2004, 75, 135-142.	3.3	37
45	The interferon-inducible IFI16 gene inhibits tube morphogenesis and proliferation of primary, but not HPV16 E6/E7-immortalized human endothelial cells. Experimental Cell Research, 2004, 293, 331-345.	2.6	60
46	CCL16 activates an angiogenic program in vascular endothelial cells. Blood, 2004, 103, 40-49.	1.4	85
47	IGF-1 down-regulates IFN-Î ³ R2 chain surface expression and desensitizes IFN-Î ³ /STAT-1 signaling in human T lymphocytes. Blood, 2003, 102, 2933-2939.	1.4	45
48	LAC-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Research, 2003, 63, 2518-25.	0.9	67
49	Death Receptor Ligands in Tumors. Journal of Immunotherapy, 2002, 25, 1-15.	2.4	20
50	DNA Vaccination Against Rat Her-2/Neu p185 More Effectively Inhibits Carcinogenesis Than Transplantable Carcinomas in Transgenic BALB/c Mice. Journal of Immunology, 2000, 165, 5133-5142.	0.8	326
51	Tumor Rejection and Immune Memory Elicited by Locally Released LEC Chemokine Are Associated with an Impressive Recruitment of APCs, Lymphocytes, and Granulocytes. Journal of Immunology, 2000, 164, 3200-3206.	0.8	83
52	Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour. , 1998, 186, 390-397.		13
53	Interleukin 12–mediated Prevention of Spontaneous Mammary Adenocarcinomas in Two Lines of Her-2/neu Transgenic Mice. Journal of Experimental Medicine, 1998, 188, 589-596.	8.5	291

4

#	ARTICLE	IF	CITATIONS
55	Antitumor Efficacy of Adenocarcinoma Cells Engineered to Produce Interleukin 12 (IL-12) or Other Cytokines Compared With Exogenous IL-12. Journal of the National Cancer Institute, 1997, 89, 1049-1058.	6.3	158
56	Cytokines, tumour-cell death and immunogenicity: a question of choice. Trends in Immunology, 1997, 18, 32-36.	7.5	161
57	Inhibition of tumor growth and enhancement of metastasis after transfection of the γ-interferon gene. International Journal of Cancer, 1993, 55, 320-329.	5.1	89
58	Modulation of interferon-γ receptor during human T lymphocyte alloactivation. European Journal of Immunology, 1993, 23, 1226-1231.	2.9	14
59	Tumor Immunogenicity Induced by the Local Occurrence of Il-2. , 1993, , 31-37.		0
60	Strategies for cytokine utilisation in tumor therapy. Medical Oncology and Tumor Pharmacotherapy, 1993, 10, 53-59.	1.1	6
61	Tumour Immunogenicity Induced by Exogenous Interleukins. , 1992, , 29-35.		0
62	Interleukin-2 injected around tumor-draining lymph nodes in head and neck cancer. Head and Neck, 1991, 13, 125-131.	2.0	50
63	Interleukin 2: In Vivo Induction of Effector Cells. , 1990, , 37-46.		0
64	Lymphokine-activated tumor inhibition: Combinatory activity of a synthetic nonapeptide from interleukin-1, interleukin-2, interleukin-4, and interferon-γ injected around tumor-draining lymph nodes. International Journal of Cancer, 1989, 44, 62-65.	5.1	10
65	B cells from chronic lymphocytic leukemia (CLL) patients are strong inducers of proliferation and major histocompatibility complex (MHC)-unrestricted [natural killer (NK)-like] cytotoxicity in normal T-lymphocytes. Journal of Clinical Immunology, 1989, 9, 329-337.	3.8	4
66	Treatment of recurrent squamous cell carcinoma of the head and neck with low doses of Interleukin-2 injected periiymphatically. Cancer, 1988, 62, 2482-2485.	4.1	146
67	Interferon-Î ³ is not an antiviral, but a growth-promoting factor for t lymphocytes. European Journal of Immunology, 1988, 18, 503-510.	2.9	59
68	Helper strategy in tumor immunology: Expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer and Metastasis Reviews, 1988, 7, 289-309.	5.9	59
69	Release of interleukin-2-like material by b-chronic lymphocytic leukemia cells. An autocrine or paracrine model of production and utilization?. Leukemia Research, 1988, 12, 201-209.	0.8	9
70	Tumor Immunotherapy by Local Injection of Interleukin 2 and Non-Reactive Lymphocytes. Progress in Tumor Research, 1988, 32, 187-212.	0.1	29
71	In vitro and in vivo immunomodulatory activity of an N-9 arginyl hypoxanthine derivative (PCF-39). International Journal of Immunopharmacology, 1987, 9, 659-667.	1.1	6

72 Lymphokine-Activated Tumor Inhibition (LATI) in Vivo. , 1987, , 335-360.

5

#	Article	IF	CITATIONS
73	Strategies for cell-mediated immunotherapy of cancer: killing or help?. Trends in Immunology, 1986, 7, 202-203.	7.5	12
74	Physiological and pathological influences of central nervous system on the immune system: A critical appraisal. Journal of Psychiatric Research, 1984, 18, 491-499.	3.1	7
75	IL-2 and Lymphocytes from Tumor Bearing Mice: A Combinatory Immunotherapy of Tumors. , 1984, , 159-173.		0
76	Radiofrequency destruction of the tuberoinfundibular region of hypothalamus permanently abrogates NK cell activity in mice. Nature, 1983, 306, 181-184.	27.8	89
77	In Vivo Requirements for the Immune Recognition of L1210 Leukemia Cells by Allogeneic T-Lymphocytes. Tumori, 1983, 69, 403-408.	1.1	0
78	DISTINCT ALLOANTIGENS TRIGGER PROLIFERATIVE OR NONPROLIFERATIVE T LYMPHOCYTE ACTIVATION IN CBA/N, CBA/J, AND C3H MICE. Transplantation, 1982, 33, 260-264.	1.0	6
79	Rous sarcoma virus-induced tumors in mice—l. Macrophage-mediated natural cytotoxicity. European Journal of Cancer & Clinical Oncology, 1982, 18, 307-315.	0.7	5
80	Immune recognition of tumor cellsin vivo. I. Role of H-2 gene products in T lymphocyte activation against minor histocompatibility antigens displayed by adenocarcinoma cells. European Journal of Immunology, 1982, 12, 664-670.	2.9	15
81	Suppressor macrophages in tumor-bearing mice. Inconsistency betweenin vivo andin vitro findings?. International Journal of Cancer, 1982, 29, 695-698.	5.1	10
82	Evolution of macrophage immune recognition of viral, bacterial, protozoal and allo-antigens. Developmental and Comparative Immunology, 1981, 5, 61-66.	2.3	2
83	The macrophage as the social interconnection within the immune system. Developmental and Comparative Immunology, 1980, 4, 11-19.	2.3	22
84	Enhancement versus tumor resistance induced by different levels of immunodepression in BALB/c mice with protozoan infections. European Journal of Cancer, 1979, 15, 27-33.	0.9	2
85	H-2-restriction and la-dependence of the efficient immune recognition of minor histocompatibility antigens in vivo. Immunogenetics, 1979, 9, 199-202.	2.4	18
86	Lymphokine production in mouse mixed lymphocyte reaction (MLR). Immunogenetics, 1979, 9, 245-253.	2.4	23
87	MATCHING FOR HLA-DR ANTIGENS IN RENAL TRANSPLANTATION. Transplantation, 1979, 27, 288-290.	1.0	4
88	Is antibody-dependent cellular cytotoxicity an important mechanism of resistance to tumors in vivo?. Immunochemistry, 1978, 15, 801-805.	1.2	3
89	In vitro arming and blocking activity of sera from BALB/c mice bearing a spontaneous transplantable adenocarcinoma. European Journal of Cancer, 1977, 13, 1217-1223.	0.9	6