
Marcelo MacÃ^ado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5935112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2004, 279, 210-217.	2.3	707
2	Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceramics International, 2016, 42, 5865-5872.	4.8	79
3	Structural and magnetic study of Fe-doped CeO2. Physica B: Condensed Matter, 2010, 405, 1821-1825.	2.7	75
4	Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. Journal of Magnetism and Magnetic Materials, 2015, 395, 263-270.	2.3	52
5	Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. Journal of Alloys and Compounds, 2009, 485, 637-641.	5.5	51
6	Electrochromic smart windows. Journal of Non-Crystalline Solids, 1992, 147-148, 792-798.	3.1	45
7	Visible-Light-Responsive Photocatalytic Activity Significantly Enhanced by Active [<i>V</i> _{Zn} + <i>V</i> _O ^{+}] Defects in Self-Assembled ZnO Nanoparticles. Inorganic Chemistry, 2021, 60, 4475-4496.	4.0	44
8	Nanocrystals of BaFe12O19 obtained by the proteic sol–gel process. Physica B: Condensed Matter, 2006, 384, 88-90.	2.7	39
9	SrFe12O19 prepared by the proteic sol–gel process. Physica B: Condensed Matter, 2006, 384, 91-93.	2.7	37
10	Yttria thin films doped with rare earth for applications in radiation detectors and thermoluminescent dosimeters. Microelectronics Journal, 2003, 34, 557-559.	2.0	32
11	BaFe12O19 thin film grown by an aqueous sol–gel process. Microelectronics Journal, 2003, 34, 565-567.	2.0	29
12	Sol-gel electrochromic device. Journal of Sol-Gel Science and Technology, 1994, 2, 667-671.	2.4	27
13	Rietveld refinement of transition metal doped ZnO. Powder Diffraction, 2008, 23, S36-S41.	0.2	23
14	Study of the magnetic and structural properties of Mn-, Fe-, and Co-doped ZnO powder. Physica B: Condensed Matter, 2012, 407, 3229-3232.	2.7	23
15	Mechanical properties of epoxy resin based on granite stone powder from the Sergipe fold-and-thrust belt composites. Materials Research, 2014, 17, 878-887.	1.3	22
16	The effects of Cr-doping on the room temperature ferromagnetism of chemically synthesized CeO2â~î^ nanoparticles. Physica B: Condensed Matter, 2012, 407, 3218-3221.	2.7	20
17	AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering. Polimeros, 2013, 23, 19-23.	0.7	19
18	Characterization of an all solid-state electrochromic window. , 1990, , .		18

Marcelo MacÃ≜do

#	Article	IF	CITATIONS
19	Novel Route for the Preparation of Nanosized NiFe2O4Powders. Japanese Journal of Applied Physics, 2004, 43, 5249-5252.	1.5	16
20	Permanent Data Storage in ZnO Thin Films by Filamentary Resistive Switching. PLoS ONE, 2016, 11, e0168515.	2.5	16
21	A novel structure ZnO-Fe-ZnO thin film memristor. Materials Science in Semiconductor Processing, 2018, 86, 43-48.	4.0	16
22	Disorder of Fe(2)O5 bipyramids and spin-phonon coupling in SrFe12O19 nanoparticles. Ceramics International, 2019, 45, 13571-13574.	4.8	16
23	Radioluminescence in ZnO. Radiation Physics and Chemistry, 2010, 79, 612-614.	2.8	14
24	Ferromagnetism in diluted magnetic Zn-Co-doped CeO2â^´Î´. Physica B: Condensed Matter, 2012, 407, 3233-3235.	2.7	14
25	Al2O3 thin film multilayer structure for application in RRAM devices. Solid-State Electronics, 2018, 149, 1-5.	1.4	14
26	LixMn2O4 thin films characterization by X-ray, electrical conductivity and XANES. Microelectronics Journal, 2003, 34, 561-563.	2.0	12
27	The influence of the pressure and temperature on the light emission of the ZnO. Physica B: Condensed Matter, 2007, 398, 291-293.	2.7	11
28	An Alternative Method to Prepare CoFe2O4 Thin Films. Physica Status Solidi (B): Basic Research, 2000, 220, 413-415.	1.5	10
29	<title>Sol-gel coatings for optoelectronic devices</title> . , 1994, 2255, 38.		9
30	Structural and electrochemical behavior of tungsten oxide obtained by solid state reaction. Solid State lonics, 2006, 177, 697-701.	2.7	9
31	Influence of Li on the K-edge of O and L2,3 of the Mn XANES in LixMn2O4 thin films. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 326-328.	1.7	9
32	Ferromagnetism in Zn-doped CeO2 Induced by Oxygen Vacancies. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2541-2543.	1.8	8
33	Sol-gel coatings for electrochromic devices. , 1992, , .		7
34	Chitosan-based ferrimagnetic membrane. Physica B: Condensed Matter, 2004, 354, 171-173.	2.7	7
35	Spin–phonon coupling in multiferroic Ba1.6Sr1.4Co2Fe24O41. Journal of Magnetism and Magnetic Materials, 2014, 364, 95-97.	2.3	7
36	Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films. Materials Research Bulletin, 2015, 66, 147-150.	5.2	7

Marcelo Macêdo

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Nickel Nanoparticles Prepared Using the Aquolif Approach. Journal of Nanoscience and Nanotechnology, 2014, 14, 5903-5910.	0.9	6
38	Room-Temperature Ferromagnetism in Chemically Synthesized Ce0.97Cr0.03O2â~δ Nanopowders. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2549-2552.	1.8	5
39	Transparent storage layers for H+and Li+ions prepared by sol-gel technique. , 1991, 1536, 48.		4
40	Synthesis of Yttria Nanopowders Doped with Rare Earth via a Coconut Water-Based Sol-Gel Process. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 247-252.	0.1	4
41	Structural, Optical, and Electrical Properties of ZnO/Nb/ZnO Multilayer Thin Films. Advanced Materials Research, 2014, 975, 238-242.	0.3	4
42	Transition from homogeneous to filamentary behavior in ZnO/ZnO-Al thin films. Journal of Alloys and Compounds, 2019, 770, 1200-1207.	5.5	4
43	Nanocrystals of Zn _{1-x} M _x O (M = Co, Mn) by proteic sol-gel process. Journal of Physics: Conference Series, 2010, 200, 072084.	0.4	3
44	Niobia sol gel: a new material for electrochromic and photoelectric applications. , 1994, , .		2
45	Cr-Doping-Induced Ferromagnetism in CeO _{2-Î} Nanopowders. Advanced Materials Research, 0, 975, 42-49.	0.3	2
46	Study of Filament Resistive Switching in New Pt/Co _{0.2} TiO _{3.2} /ITO Devices for Application in Nonâ€Volatile Memory. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800369.	1.8	2
47	Wettability under Imposed Flow as a Function of the Baking Temperatures of a DGEBA Epoxy Resin Used in the Crude Oil Industry. Energy & Fuels, 2007, 21, 2311-2316.	5.1	1
48	Structural and Magnetoelectric Properties of a New W-Type Hexaferrite (Sr _{0.85} Ce _{0.15} Co ₂ Fe ₁₆ O _{27-Î′}). Advanced Materials Research, 2014, 975, 263-267.	0.3	1
49	Characteristics of analog memristor on thin-film Pt/Co0.2TiO3.2/ITO. Journal of Materials Science: Materials in Electronics, 2020, 31, 5692-5696.	2.2	1
50	Production and Electrochemical Properties of LiMn ₂ O ₄ Thin Films via a Proteic Sol-Gel Process. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 242-246.	0.1	0
51	Electrodeposition of Co strips structured by CO2 laser microlithography. Physica B: Condensed Matter, 2006, 384, 12-14.	2.7	0
52	Physical properties of a natural lamellar aluminosilicate structure, rich in Fe. Journal of Magnetism and Magnetic Materials, 2012, 324, 2306-2309.	2.3	0
53	Effect of Substituting Sr ²⁺ for Gd ³⁺ on Structural and Magnetoelectric Properties of W-Type Hexaferrite. Advanced Materials Research, 2014, 975, 268-273.	0.3	0
	Magnetocrystalline Properties of		

54 Sr<sub>1.4</sub>Ba<sub>1.6</sub>Co<sub>2</sub>Fe<sub>24</sub>O<sub>41</sub>Alt;/sub>

#	Article	IF	CITATIONS
55	Effects of Ca ²⁺ -Doping on the Crystal Lattice of α-Fe ₂ O ₃ . Advanced Materials Research, 0, 975, 116-121.	0.3	ο
56	Remarkable magnetic anisotropy of nickel nanocrystals growth with dominantly exposed {1 1 1} facets in coir fiber pores. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114663.	3.5	0
57	Memristor Behavior under Dark and Violet Illumination in Thin Films of ZnO/ZnO-Al Multilayers. , 0, , .		Ο
58	Intra-4f transitions-induced red emission in ZnO-Eu2O3 ceramic. Radiation Physics and Chemistry, 2021, 183, 109392.	2.8	0