Sota Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5934429/publications.pdf

Version: 2024-02-01

137	7,823	53794 45	⁵⁴⁹¹¹
papers	citations	h-index	g-index
158	158	158	5531
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-Assembled M ₂₄ L ₄₈ Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation. Science, 2010, 328, 1144-1147.	12.6	747
2	Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature, 2016, 540, 563-566.	27.8	489
3	Fluorous Nanodroplets Structurally Confined in an Organopalladium Sphere. Science, 2006, 313, 1273-1276.	12.6	294
4	Self-Assembly of M 30 L 60 Icosidodecahedron. CheM, 2016, 1, 91-101.	11.7	246
5	Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13097-13101.	7.1	210
6	Protein encapsulation within synthetic molecular hosts. Nature Communications, 2012, 3, 1093.	12.8	208
7	Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. Nature Chemistry, 2009, 1, 53-56.	13.6	206
8	An M18L24 stellated cuboctahedron through post-stellation of an M12L24 core. Nature Chemistry, 2012, 4, 330-333.	13.6	191
9	Switching the Interior Hydrophobicity of a Self-Assembled Spherical Complex through the Photoisomerization of Confined Azobenzene Chromophores. Angewandte Chemie - International Edition, 2007, 46, 5133-5136.	13.8	162
10	Remarkable Stabilization of M ₁₂ L ₂₄ Spherical Frameworks through the Cooperation of 48 Pd(II)â^Pyridine Interactions. Journal of the American Chemical Society, 2009, 131, 6064-6065.	13.7	160
11	Finite phenine nanotubes with periodic vacancy defects. Science, 2019, 363, 151-155.	12.6	159
12	Saccharide-Coated M12L24Molecular Spheres That Form Aggregates by Multi-interaction with Proteins. Journal of the American Chemical Society, 2007, 129, 3816-3817.	13.7	152
13	Synthesis of Disubstituted Cucurbit[6]uril and Its Rotaxane Derivative. Organic Letters, 2002, 4, 1287-1289.	4.6	149
14	Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. Nature Chemistry, 2010, 2, 25-29.	13.6	140
15	Selfâ€Assembly of M ₂₄ L ₄₈ Polyhedra Based on Empirical Prediction. Angewandte Chemie - International Edition, 2012, 51, 3161-3163.	13.8	136
16	A Sphereâ€inâ€Sphere Complex by Orthogonal Selfâ€Assembly. Angewandte Chemie - International Edition, 2011, 50, 10318-10321.	13.8	133
17	An M ₁₂ (L ¹) ₁₂ (L ²) ₁₂ Cantellated Tetrahedron: A Case Study on Mixedâ€Ligand Selfâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 13510-13513.	13.8	116
18	Endohedral Peptide Lining of a Self-Assembled Molecular Sphere To Generate Chirality-Confined Hollows. Journal of the American Chemical Society, 2007, 129, 10652-10653.	13.7	113

#	Article	IF	CITATIONS
19	Self-Assembly of Pt(II) Spherical Complexes via Temporary Labilization of the Metal–Ligand Association in 2,2,2-Trifluoroethanol. Journal of the American Chemical Society, 2011, 133, 13317-13319.	13.7	109
20	Coronene Nanophase within Coordination Spheres: Increased Solubility of C60. Journal of the American Chemical Society, 2010, 132, 2544-2545.	13.7	99
21	Emergent Ion-Gated Binding of Cationic Host–Guest Complexes within Cationic M ₁₂ L ₂₄ Molecular Flasks. Journal of the American Chemical Society, 2014, 136, 12027-12034.	13.7	94
22	Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8374-8379.	7.1	92
23	Nanometer-Sized Shell Molecules That Confine Endohedral Polymerizing Units. Angewandte Chemie - International Edition, 2007, 46, 1083-1085.	13.8	89
24	Selfâ€Assembly of Giant Spherical Liquidâ€Crystalline Complexes and Formation of Nanostructured Dynamic Gels that Exhibit Selfâ€Healing Properties. Angewandte Chemie - International Edition, 2017, 56, 14085-14089.	13.8	81
25	Geometrically Restricted Intermediates in the Selfâ€Assembly of an M ₁₂ L ₂₄ Cuboctahedral Complex. Angewandte Chemie - International Edition, 2015, 54, 155-158.	13.8	80
26	Cyclo- <i>meta</i> -phenylene Revisited: Nickel-Mediated Synthesis, Molecular Structures, and Device Applications. Journal of Organic Chemistry, 2014, 79, 9735-9739.	3.2	79
27	M ₁₂ L ₂₄ Spheres with Endo and Exo Coordination Sites: Scaffolds for Non-Covalent Functionalization. Journal of the American Chemical Society, 2013, 135, 12497-12499.	13.7	77
28	Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8109-8114.	7.1	77
29	Simulation of Metal–Ligand Self-Assembly into Spherical Complex M ₆ L ₈ . Journal of the American Chemical Society, 2012, 134, 14401-14407.	13.7	74
30	Molecular recognition in curved ï€-systems: effects of ï€-lengthening of tubular molecules on thermodynamics and structures. Chemical Science, 2015, 6, 909-916.	7.4	72
31	Coordination-Directed Self-Assembly of M ₁₂ L ₂₄ Nanocage: Effects of Kinetic Trapping on the Assembly Process. ACS Nano, 2014, 8, 1290-1296.	14.6	70
32	Viralâ€Capsidâ€Type Vesicleâ€Like Structures Assembled from M ₁₂ L ₂₄ Metal–Organic Hybrid Nanocages. Angewandte Chemie - International Edition, 2011, 50, 5182-5187.	13.8	68
33	Well-Defined DNA Nanoparticles Templated by Self-Assembled M12L24Molecular Spheres and Binding of Complementary Oligonucleotides. Journal of the American Chemical Society, 2010, 132, 15930-15932.	13.7	67
34	Aromatic hydrocarbon macrocycles for highly efficient organic light-emitting devices with single-layer architectures. Chemical Science, 2016, 7, 896-904.	7.4	63
35	Noncovalent Tailoring of the Binding Pocket of Self-Assembled Cages by Remote Bulky Ancillary Groups. Journal of the American Chemical Society, 2013, 135, 613-615.	13.7	61
36	Synthesis and Bowlâ€inâ€Bowl Assembly of a Geodesic Phenylene Bowl. Angewandte Chemie - International Edition, 2017, 56, 6511-6514.	13.8	60

#	Article	IF	Citations
37	Discrete and Wellâ€Defined Hydrophobic Phases Confined in Selfâ€Assembled Spherical Complexes. Angewandte Chemie - International Edition, 2008, 47, 5780-5782.	13.8	59
38	Size-, Mass-, and Density-Controlled Preparation of TiO ₂ Nanoparticles in a Spherical Coordination Template. Journal of the American Chemical Society, 2013, 135, 6786-6789.	13.7	59
39	Concyclic CH-Ï€ arrays for single-axis rotations of a bowl in a tube. Nature Communications, 2018, 9, 3779.	12.8	59
40	Peptide-coated, self-assembled M12L24 coordination spheres and their immobilization onto an inorganic surface. Chemical Science, 2010, 1, 68.	7.4	57
41	Beltâ€Shaped Cyclonaphthylenes. Angewandte Chemie - International Edition, 2015, 54, 12800-12804.	13.8	56
42	Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics. Chemical Science, 2015, 6, 2746-2753.	7.4	56
43	Geometric measures of finite carbon nanotube molecules: a proposal for length index and filling indexes. Pure and Applied Chemistry, 2014, 86, 489-495.	1.9	55
44	A nitrogen-doped nanotube molecule with atom vacancy defects. Nature Communications, 2020, 11, 1807.	12.8	46
45	Incarceration of (PdO) _{<i>n</i>} and Pd _{<i>n</i>} Clusters by Cageâ€Templated Synthesis of Hollow Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5893-5896.	13.8	43
46	Ratchet-free solid-state inertial rotation of a guest ball in a tight tubular host. Nature Communications, 2018, 9, 1907.	12.8	43
47	Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angewandte Chemie - International Edition, 2021, 60, 13529-13535.	13.8	43
48	Narrowing Segments of Helical Carbon Nanotubes with Curved Aromatic Panels. Angewandte Chemie - International Edition, 2019, 58, 7385-7389.	13.8	42
49	Parallel-Stacked Aromatic Hosts for Orienting Small Molecules in a Magnetic Field: Induced Residual Dipolar Coupling by Encapsulation. Journal of the American Chemical Society, 2010, 132, 3670-3671.	13.7	40
50	Pentagonâ€Embedded Cycloarylenes with Cylindrical Shapes. Angewandte Chemie - International Edition, 2017, 56, 9106-9110.	13.8	40
51	Modular Synthesis of Aromatic Hydrocarbon Macrocycles for Simplified, Single-Layer Organic Light-Emitting Devices. Journal of Organic Chemistry, 2016, 81, 662-666.	3.2	39
52	Elucidating the Solvent Effect on the Switch of the Helicity of Poly(quinoxaline-2,3-diyl)s: A Conformational Analysis by Small-Angle Neutron Scattering. Journal of the American Chemical Society, 2018, 140, 2722-2726.	13.7	39
53	A Selfâ€Assembled Spherical Complex Displaying a Gangliosidic Glycan Cluster Capable of Interacting with Amyloidogenic Proteins. Angewandte Chemie - International Edition, 2015, 54, 8435-8439.	13.8	38
54	Selfâ€Sorting of Two Hydrocarbon Receptors with One Carbonaceous Ligand. Angewandte Chemie - International Edition, 2016, 55, 15339-15343.	13.8	38

#	Article	IF	CITATIONS
55	Stereoisomerism in Nanohoops with Heterogeneous Biaryl Linkages of <i>E/Z</i> - and <i>R/S</i> -Geometries. ACS Central Science, 2016, 2, 740-747.	11.3	37
56	Thermal and Palladium-Catalyzed $[3+2]$ Synthesis of Cyclopentadienone Acetals from Cyclopropenone Acetals and Acetylenes. Organic Letters, 2004, 6, 3569-3571.	4.6	35
57	Overcrowded Ethylene-Bridged Nanohoop Dimers: Regioselective Synthesis, Multiconfigurational Electronic States, and Global Hýckel/Möbius Aromaticity. Journal of the American Chemical Society, 2021, 143, 20419-20430.	13.7	35
58	Supramolecular modulation of action of polyamine on enzyme/DNA interactions. Chemical Communications, 2005, , 1549.	4.1	34
59	The Precise Synthesis and Growth of Core–Shell Nanoparticles within a Selfâ€Assembled Spherical Template. Angewandte Chemie - International Edition, 2011, 50, 4858-4861.	13.8	34
60	Photoinduced Electron Transfer in a Dynamic Supramolecular System with Curved π-Structures. Organic Letters, 2014, 16, 3352-3355.	4.6	34
61	Carbonâ€Rich Active Materials with Macrocyclic Nanochannels for High apacity Negative Electrodes in Allâ€Solidâ€State Lithium Rechargeable Batteries. Small, 2016, 12, 3381-3387.	10.0	33
62	Polymerisation of an Anionic Monomer in a Self-Assembled M ₁₂ L ₂₄ Coordination Sphere with Cationic Interior. Supramolecular Chemistry, 2008, 20, 81-94.	1.2	32
63	Oligo(4-aminopiperidine-4-carboxylic acid): An Unusual Basic Oligopeptide with an Acid-Induced Helical Conformation. Journal of the American Chemical Society, 2010, 132, 13176-13178.	13.7	31
64	Assembly, Thermodynamics, and Structure of a Twoâ€Wheeled Composite of a Dumbbellâ€Shaped Molecule and Cylindrical Molecules with Different Edges. Angewandte Chemie - International Edition, 2017, 56, 15020-15024.	13.8	30
65	Fluctuating Carbonaceous Networks with a Persistent Molecular Shape: A Saddleâ€Shaped Geodesic Framework of 1,3,5â€Trisubstituted Benzene (Phenine). Angewandte Chemie - International Edition, 2018, 57, 8555-8559.	13.8	30
66	Entropy-Driven Ball-in-Bowl Assembly of Fullerene and Geodesic Phenylene Bowl. Organic Letters, 2017, 19, 2362-2365.	4.6	29
67	An Obtuseâ€angled Corner Unit for Fluctuating Carbon Nanohoops. Chemistry - an Asian Journal, 2017, 12, 271-275.	3.3	29
68	Stepwise DNA condensation by a histone-mimic peptide-coated M12L24 spherical complex. Chemical Science, 2014, 5, 3257.	7.4	28
69	Synthesis and oxidation catalysis of a Ti-substituted phosphotungstate, and identification of the active oxygen species. Catalysis Science and Technology, 2015, 5, 4778-4789.	4.1	27
70	Ï€-Extended Doublet Open-Shell Graphene Fragments Exhibiting One-Dimensional Chain Stacking. Journal of the American Chemical Society, 2022, 144, 2095-2100.	13.7	27
71	Three-component synthesis of polysubstituted benzene derivatives via Diels–Alder reaction of cyclopentadienone acetal with alkyne. Tetrahedron, 2005, 61, 11449-11455.	1.9	26
72	Selfâ€Sorting of Two Hydrocarbon Receptors with One Carbonaceous Ligand. Angewandte Chemie, 2016, 128, 15565-15569.	2.0	26

#	Article	IF	CITATIONS
73	Selfâ€Assembly of Giant Spherical Liquidâ€Crystalline Complexes and Formation of Nanostructured Dynamic Gels that Exhibit Selfâ€Healing Properties. Angewandte Chemie, 2017, 129, 14273-14277.	2.0	25
74	Synthesis, Structures, and Assembly of Geodesic Phenine Frameworks with Isoreticular Networks of [<i>n</i>]Cyclo- <i>para</i> -phenylenes. Journal of Organic Chemistry, 2019, 84, 3500-3507.	3.2	24
75	Finely Resolved Threshold for the Sharp M ₁₂ L ₂₄ /M ₂₄ 4 48 Structural Switch in Multiâ€Component M _{<i>n</i>} L _{2<i>n</i>} Polyhedral Assemblies: Xâ€ray, MS, NMR, and Ultracentrifugation Analyses. Chemistry - an Asian Journal. 2015. 10. 2292-2295.	3.3	23
76	Synthesis and Bowlâ€inâ€Bowl Assembly of a Geodesic Phenylene Bowl. Angewandte Chemie, 2017, 129, 6611-6614.	2.0	23
77	Assembly, Thermodynamics, and Structure of a Twoâ€Wheeled Composite of a Dumbbellâ€Shaped Molecule and Cylindrical Molecules with Different Edges. Angewandte Chemie, 2017, 129, 15216-15220.	2.0	22
78	Cycloparaphenylene Double Nanohoop: Structure, Lamellar Packing, and Encapsulation of C ₆₀ in the Solid State. Organic Letters, 2021, 23, 7943-7948.	4.6	22
79	Unbiased Rotational Motions of an Ellipsoidal Guest in a Tight Yet Pliable Host. Angewandte Chemie - International Edition, 2019, 58, 2040-2044.	13.8	21
80	DOSY NMR, X-ray Structural and Ion-Mobility Mass Spectrometric Studies on Electron-Deficient and Electron-Rich M ₆ L ₄ Coordination Cages. Inorganic Chemistry, 2015, 54, 6055-6061.	4.0	20
81	Bridging Adhesion of a Protein onto an Inorganic Surface Using Self-Assembled Dual-Functionalized Spheres. Journal of the American Chemical Society, 2015, 137, 12890-12896.	13.7	20
82	Synthesis and Dynamic Structures of a Hybrid Nanohoop Molecule Composed of Anthanthrenylene and Phenylene Panels. Chemistry Letters, 2015, 44, 1581-1583.	1.3	19
83	Pentagonâ€Embedded Cycloarylenes with Cylindrical Shapes. Angewandte Chemie, 2017, 129, 9234-9238.	2.0	18
84	Retarded Solidâ€State Rotations of an Ovalâ€Shaped Guest in a Deformed Cylinder with CH–π Arrays. Angewandte Chemie - International Edition, 2019, 58, 12170-12174.	13.8	18
85	One-pot Synthesis of $[\langle i \rangle n \langle i \rangle]$ Cyclo-1,3-pyrenylenes via Ni-mediated Macrocyclization. Chemistry Letters, 2016, 45, 217-219.	1.3	17
86	Synthesis and Structures of π-Extended [<i>n</i>]Cyclo- <i>para</i> -phenylenes (<i>n</i> = 12, 16, 20) Containing <i>n</i> /2 Nitrogen Atoms. Chemistry Letters, 2016, 45, 658-660.	1.3	17
87	Reply to the $\hat{a}\in \mathbb{C}$ Comment on $\hat{a}\in \mathbb{C}$ Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics $\hat{a}\in \mathbb{C}$ by E. M. Cabaleiro-Lago, J. Rodriguez-Otero and A. Gil, Chem. Sci., 2016, $\langle b \rangle 7 \langle b \rangle$, DOI: 10.1039/C5SC04676A. Chemical Science, 2016, $\langle b \rangle 7 \langle b \rangle$, and $\langle b \rangle 7 \langle b \rangle$ contains the containing th	7.4	17
88	Synthesis of a Bridging Ligand with a Non-denatured Protein Pendant: Toward Protein Encapsulation in a Coordination Cage. Chemistry Letters, 2012, 41, 313-315.	1.3	16
89	Narrowing Segments of Helical Carbon Nanotubes with Curved Aromatic Panels. Angewandte Chemie, 2019, 131, 7463-7467.	2.0	16
90	Modulation of Energy Conversion Processes in Carbonaceous Molecular Bearings. Chemistry - an Asian Journal, 2015, 10, 2404-2410.	3.3	15

#	Article	IF	Citations
91	Efficient Blue Electroluminescence from a Singleâ€layer Organic Device Composed Solely of Hydrocarbons. Chemistry - an Asian Journal, 2017, 12, 730-733.	3.3	15
92	Room temperature magnetoresistance in an organic spin valve with an aromatic hydrocarbon macrocycle. APL Materials, 2017, 5, .	5.1	15
93	Fluctuating Carbonaceous Networks with a Persistent Molecular Shape: A Saddleâ€6haped Geodesic Framework of 1,3,5â€∓risubstituted Benzene (Phenine). Angewandte Chemie, 2018, 130, 8691-8695.	2.0	14
94	Fluorescence Enhancement of Aromatic Macrocycles by Lowering Excited Singlet State Energies. Journal of Organic Chemistry, 2020, 85, 150-157.	3.2	13
95	Enhanced yet Inverted Effects of Ï∈-Extension in Self-Assembly of Curved Ï∈-Systems with Helicity. Organic Letters, 2017, 19, 6456-6459.	4.6	12
96	Unbiased Rotational Motions of an Ellipsoidal Guest in a Tight Yet Pliable Host. Angewandte Chemie, 2019, 131, 2062-2066.	2.0	12
97	Synthesis of a Negatively Curved Nanocarbon Molecule with an Octagonal Omphalos via Designâ€ofâ€Experiments Optimizations Supplemented by Machine Learning. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
98	Self-assembled Inverse Dendrimer. Chemistry Letters, 2011, 40, 726-727.	1.3	11
99	Introduction of Nitrogen Atoms in [<i>n</i>]Cyclo- <i>meta</i> -phenylenes via Cross-coupling Macrocyclization. Chemistry Letters, 2016, 45, 676-678.	1.3	11
100	Hyperâ€Assembly of Selfâ€Assembled Glycoclusters Mediated by Specific Carbohydrate–Carbohydrate Interactions. Chemistry - an Asian Journal, 2017, 12, 968-972.	3.3	11
101	Synthesis of a Hemispherical Geodesic Phenine Framework by a Polygon Assembling Strategy. Angewandte Chemie - International Edition, 2020, 59, 6567-6571.	13.8	11
102	Acyclic, Linear Oligo―meta â€phenylenes as Multipotent Base Materials for Highly Efficient Singleâ€layer Organic Lightâ€emitting Devices. Chemistry - an Asian Journal, 2020, 15, 2181-2186.	3.3	11
103	Stereodivergent Synthesis and Configurational Assignment of the C1–C15 Segment of Amphirionin-5. Journal of Organic Chemistry, 2016, 81, 9105-9121.	3.2	10
104	Synthesis of 9,10-Diarylanthracenes via Mg(TMP) $2\hat{A}$ -2LiCl-Mediated Benzyne Generation/[4+2] Cycloaddition and Deoxygenation of 9,10-Epoxyanthracene Intermediates. Synlett, 2018, 29, 513-518.	1.8	10
105	Retarded Solidâ€State Rotations of an Ovalâ€Shaped Guest in a Deformed Cylinder with CH–π Arrays. Angewandte Chemie, 2019, 131, 12298-12302.	2.0	10
106	[n]Cycloâ€3,6â€phenanthrenylenes: Synthesis, Structure, and Fluorescence. Chemistry - an Asian Journal, 2017, 12, 2093-2097.	3.3	9
107	Total Synthesis of (â^')â€Histrionicotoxin through a Stereoselective Radical Translocation–Cyclization Reaction. Angewandte Chemie, 2017, 129, 1107-1111.	2.0	9
108	Two polyhedral frameworks of an M12L24 spherical complex revealed by replica-exchange molecular dynamics simulations. Chemical Physics Letters, 2019, 714, 185-189.	2.6	9

#	Article	IF	CITATIONS
109	Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop**. Angewandte Chemie, 2021, 133, 13641-13647.	2.0	9
110	Chemical Reduction of a Nanosized [6]Cycloâ€2,7â€naphthylene Macrocycle. Angewandte Chemie - International Edition, 2021, 60, 11201-11205.	13.8	8
111	A self-assembled, π-stacked complex as a finely-tunable magnetic aligner for biomolecular NMR applications. Chemical Communications, 2015, 51, 2540-2543.	4.1	7
112	Diels–Alder Reaction of Cyclopentadienone Acetal with Pyrrole and Indole. Bulletin of the Chemical Society of Japan, 2006, 79, 1288-1292.	3.2	6
113	Ineffective OH Pinning of the Flipping Dynamics of a Spherical Guest within a Tightâ€Fitting Tube. Angewandte Chemie - International Edition, 2020, 59, 14570-14576.	13.8	6
114	Synthesis of a Hemispherical Geodesic Phenine Framework by a Polygon Assembling Strategy. Angewandte Chemie, 2020, 132, 6629-6633.	2.0	6
115	Preferences of polarity and chirality in triglycine sulfate crystals by alanine ghost. Journal of Physics and Chemistry of Solids, 2021, 151, 109890.	4.0	6
116	Communicationâ€"Structural Modulation of Macrocyclic Materials for Charge Carrier Transport Layers in Organic Light-Emitting Devices. ECS Journal of Solid State Science and Technology, 2017, 6, M3065-M3067.	1.8	5
117	Synthetic Approach to biomolecular science by cyborg supramolecular chemistry. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 358-364.	2.4	5
118	Periphery Design of Macrocyclic Materials for Organic Light-Emitting Devices with a Blue Phosphorescent Emitter. Organic Letters, 2019, 21, 2759-2762.	4.6	5
119	Regulated Singleâ€Axis Rotations of a Carbonaceous Guest in a van der Waals Complex with an Entropy Cost. Chemistry - an Asian Journal, 2020, 15, 273-278.	3.3	5
120	Ineffective OH Pinning of the Flipping Dynamics of a Spherical Guest within a Tightâ€Fitting Tube. Angewandte Chemie, 2020, 132, 14678-14684.	2.0	4
121	A Case Study of Stereoisomerism with [6]Cyclo[4]helicenylenes. Chemistry Letters, 2021, 50, 110-112.	1.3	4
122	Comprehensive Structural Analysis of the Bitter Components in Beer by the HPLCâ€Assisted Crystalline Sponge Method. Chemistry - A European Journal, 2022, 28, .	3.3	4
123	Novel Titanium Complexes with a Reversible Structural Change on Solvent Adsorption and Desorption. Chemistry Letters, 2015, 44, 1050-1052.	1.3	3
124	Crystalline Naphthylene Macrocycles Capturing Gaseous Small Molecules in Chiral Nanopores. Chemistry - an Asian Journal, 2020, 15, 3829-3835.	3.3	3
125	Synthesis and stereoisomerism of [n]cyclo-2,9-phenanthrenylene congeners possessing alternating E/Z- and R/S-biaryl linkages. Organic and Biomolecular Chemistry, 2020, 18, 4949-4955.	2.8	3
126	Chemical Reduction of a Nanosized [6]Cycloâ€2,7â€naphthylene Macrocycle. Angewandte Chemie, 2021, 133, 11301-11305.	2.0	2

#	Article	IF	Citations
127	Thermal and Palladium-Catalyzed [3 + 2] Synthesis of Cyclopentadienone Acetals from Cyclopropenone Acetals and Acetylenes ChemInform, 2005, 36, no.	0.0	1
128	76â€4: Lateâ€Newsâ€Paper: Aromatic Hydrocarbon Macrocycles for Highly Efficient Organic Lightâ€Emitting Devices with Simple‣ayer Architectures. Digest of Technical Papers SID International Symposium, 2020, 51, 1138-1141.	0.3	1
129	Development of Biomolecular Interfaces Constructed on the Frameworks of Huge, Hollow Spherical Complexes. Bulletin of Japan Society of Coordination Chemistry, 2015, 65, 30-37.	0.2	0
130	Lithium Batteries: Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries (Small 25/2016). Small, 2016, 12, 3472-3472.	10.0	0
131	InnenrÃ⅓cktitelbild: Synthesis and Bowlâ€inâ€Bowl Assembly of a Geodesic Phenylene Bowl (Angew. Chem.) Tj	ет <u>о</u> д1 1 с	.784314 rgB
132	Frontispiz: Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop. Angewandte Chemie, 2021, 133, .	2.0	0
133	Frontispiece: Cycloparaphenylene–Phenalenyl Radical and Its Dimeric Double Nanohoop. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
134	Giant Optical Anisotropy in High Temperature Superconducting Cuprate Bi ₂ Sr ₂ CaCu ₂ O ₈₊ <i>_Î</i> . Journal of the Physical Society of Japan, 2021, 90, 113702.	1.6	0
135	Single-crystal structure analysis of non-deuterated triglycine sulfate by neutron diffraction at 20 and 298â€K: a new disorder model for the 298â€K structure. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 306-312.	0.5	0
136	Crystalline materials with functional nanopores. Japanese Journal of Pesticide Science, 2021, 46, 160-167.	0.0	0
137	Synthesis of a Negatively Curved Nanocarbon Molecule with an Octagonal OmphalosÂviaÂDesignâ€ofâ€Experiments Optimizations Supplemented by Machine Learning. Angewandte Chemie, 0, , .	2.0	0