Karen E Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5934182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. Journal of Cell Biology, 2022, 221, .	5.2	17
2	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	10.3	18
3	Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proceedings of the United States of America, 2021, 118, .	7.1	20
4	The 5-Phosphatase SHIP2 Promotes Neutrophil Chemotaxis and Recruitment. Frontiers in Immunology, 2021, 12, 671756.	4.8	4
5	Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils. Science Signaling, 2020, 13, .	3.6	19
6	The Parkinson's gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P3. Journal of Cell Science, 2019, 132, .	2.0	26
7	Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks. Biochemical Journal, 2018, 475, 117-135.	3.7	33
8	cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. Journal of Immunology, 2017, 198, 1285-1296.	0.8	46
9	PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K. Molecular Cell, 2017, 68, 566-580.e10.	9.7	149
10	SGK1 Is a Critical Component of an AKT-Independent Pathway Essential for PI3K-Mediated Tumor Development and Maintenance. Cancer Research, 2017, 77, 6914-6926.	0.9	32
11	A module for Rac temporal signal integration revealed with optogenetics. Journal of Cell Biology, 2017, 216, 2515-2531.	5.2	61
12	In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Advances, 2017, 1, 918-932.	5.2	34
13	Investigating the effect of arachidonate supplementation on the phosphoinositide content of MCF10a breast epithelial cells. Advances in Biological Regulation, 2016, 62, 18-24.	2.3	20
14	Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8 + T Cells. Immunity, 2016, 45, 685-700.	14.3	68
15	In B cells, phosphatidylinositol 5-phosphate 4-kinase–α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10571-10576.	7.1	21
16	Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Science Signaling, 2016, 9, ra82.	3.6	53
17	The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nature Immunology, 2016, 17, 104-112.	14.5	192
18	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	6.9	137

KAREN E ANDERSON

#	Article	IF	CITATIONS
19	Inactivation of the Class II PI3K-C2Î ² Potentiates Insulin Signaling and Sensitivity. Cell Reports, 2015, 13, 1881-1894.	6.4	66
20	The regulatory subunits of PI3K \hat{I}^3 control distinct neutrophil responses. Science Signaling, 2015, 8, ra8.	3.6	42
21	The Basal Transcription Complex Component TAF3 Transduces Changes in Nuclear Phosphoinositides into Transcriptional Output. Molecular Cell, 2015, 58, 453-467.	9.7	67
22	Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 155-160.	7.1	61
23	The hexosamine biosynthesis pathway and Oâ€Glc <scp>NA</scp> cylation maintain insulinâ€stimulated <scp>PI</scp> 3Kâ€ <scp>PKB</scp> phosphorylation and tumour cell growth after shortâ€term glucose deprivation. FEBS Journal, 2014, 281, 3591-3608.	4.7	26
24	A new approach to measuring phosphoinositides in cells by mass spectrometry. Advances in Biological Regulation, 2014, 54, 131-141.	2.3	70
25	P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. Journal of Cell Science, 2014, 127, 2589-600.	2.0	50
26	Lysophosphatidylinositol-Acyltransferase-1 (LPIAT1) Is Required to Maintain Physiological Levels of PtdIns and PtdInsP2 in the Mouse. PLoS ONE, 2013, 8, e58425.	2.5	65
27	Phosphoinositide 3-OH Kinase Regulates Integrin-Dependent Processes in Neutrophils by Signaling through Its Effector ARAP3. Journal of Immunology, 2013, 190, 381-391.	0.8	19
28	Signaling via Class IA Phosphoinositide 3-Kinases (PI3K) in Human, Breast-Derived Cell Lines. PLoS ONE, 2013, 8, e75045.	2.5	12
29	GPCR activation of Ras and Pl3Kl̂ ³ in neutrophils depends on PLCl̂ ² 2/l̂ ² 3 and the RasGEF RasGRP4. EMBO Journal, 2012, 31, 3118-3129.	7.8	58
30	PI4P and PI(4,5)P ₂ Are Essential But Independent Lipid Determinants of Membrane Identity. Science, 2012, 337, 727-730.	12.6	435
31	Structure of Lipid Kinase p110β/p85β Elucidates an Unusual SH2-Domain-Mediated Inhibitory Mechanism. Molecular Cell, 2011, 41, 567-578.	9.7	161
32	PI3KÎ ² Plays a Critical Role in Neutrophil Activation by Immune Complexes. Science Signaling, 2011, 4, ra23.	3.6	130
33	SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor. PLoS ONE, 2011, 6, e21205.	2.5	226
34	The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood, 2011, 118, 1087-1098.	1.4	54
35	Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nature Methods, 2011, 8, 267-272.	19.0	246
36	PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and FcÎ ³ -receptor-stimulated ROS production in neutrophils. Journal of Cell Science, 2011, 124, 1973-1983.	2.0	36

KAREN E ANDERSON

#	Article	IF	CITATIONS
37	P-Rex1 and Vav1 Cooperate in the Regulation of Formyl-Methionyl-Leucyl-Phenylalanine–Dependent Neutrophil Responses. Journal of Immunology, 2011, 186, 1467-1476.	0.8	80
38	Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood, 2010, 116, 6027-6036.	1.4	40
39	PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood, 2010, 116, 4978-4989.	1.4	55
40	CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood, 2008, 112, 5202-5211.	1.4	81
41	Membrane Translocation of P-Rex1 Is Mediated by G Protein βγ Subunits and Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2007, 282, 29967-29976.	3.4	72
42	Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. Journal of Lipid Research, 2007, 48, 726-732.	4.2	27
43	Identification of a Unique Co-operative Phosphoinositide 3-Kinase Signaling Mechanism Regulating Integrin αIIbβ3 Adhesive Function in Platelets. Journal of Biological Chemistry, 2007, 282, 28648-28658.	3.4	78
44	PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO Journal, 2006, 25, 4468-4478.	7.8	116
45	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
46	PI 3-kinase p110β: a new target for antithrombotic therapy. Nature Medicine, 2005, 11, 507-514.	30.7	555
47	SHIP1 and Lyn Kinase Negatively Regulate Integrin αIIbβ3 Signaling in Platelets. Journal of Biological Chemistry, 2004, 279, 32196-32204.	3.4	71
48	Class I phosphoinositide 3-kinases. International Journal of Biochemistry and Cell Biology, 2003, 35, 1028-1033.	2.8	73
49	Direct Effects of Caffeine and Theophylline on p110δ and Other Phosphoinositide 3-Kinases. Journal of Biological Chemistry, 2002, 277, 37124-37130.	3.4	138
50	Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein lb/V/IX and integrin αIIbβ3. Blood, 2002, 99, 151-158.	1.4	115
51	The Crystal Structure of the PX Domain from p40phox Bound to Phosphatidylinositol 3-Phosphate. Molecular Cell, 2001, 8, 829-839.	9.7	263
52	PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biology, 2001, 3, 679-682.	10.3	389
53	Src Family Kinases Mediate Receptor-stimulated, Phosphoinositide 3-Kinase-dependent, Tyrosine Phosphorylation of Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides-1 in Endothelial and B Cell Lines. Journal of Biological Chemistry, 2001, 276, 42767-42773.	3.4	32
54	Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Current Biology, 1998, 8, 684-691.	3.9	334

KAREN E ANDERSON

#	Article	IF	CITATIONS
55	Protein Kinase B Kinases That Mediate Phosphatidylinositol 3,4,5-Trisphosphate-Dependent Activation of Protein Kinase B. Science, 1998, 279, 710-714.	12.6	992
56	The norepinephrine-stimulated inositol phosphate response in human atria. Journal of Molecular and Cellular Cardiology, 1995, 27, 2415-2419.	1.9	11
57	Suppression of Ventricular Arrhythmias During Ischemia-Reperfusion by Agents Inhibiting Ins(1,4,5)P ₃ Release. Circulation, 1995, 91, 2712-2716.	1.6	68
58	Inositol Phosphate Release and Metabolism in Rat Left Atria. Circulation Research, 1995, 76, 252-260.	4.5	43
59	Inositol Phosphate Release and Metabolism During Myocardial Ischemia and Reperfusion in Rat Heart. Circulation Research, 1995, 76, 261-268.	4.5	59
60	Inositol 1,4,5-trisphosphate receptor function in neonatal cardiomyocytes. European Journal of Pharmacology, 1994, 268, 275-278.	2.6	7
61	INOSITOL-1,4,5-TRISPHOSPHATE [INS(1,4,5)P3] AND INS(1,4,5)P3RECEPTOR CONCENTRATIONS IN HEART TISSUES. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 257-260.	1.9	4
62	Lyophilization can generate artifacts in chromatographic profiles of inositol phosphates. Biomedical Applications, 1993, 619, 121-126.	1.7	5
63	STIMULATION OF PHOSPHATIDYLINOSITOL TURNOVER IN ADULT RAT LEFT ATRIA DOES NOT INVOLVE RELEASE OF INOSITOL (1,4,5) TRI SPHOSPHATE. Clinical and Experimental Pharmacology and Physiology, 1993, 20, 335-338.	1.9	3
64	Inositol Phosphates in Rat Atria and the Importance of the Extraction Procedure. Journal of Molecular and Cellular Cardiology, 1993, 25, 215-227.	1.9	13
65	The Isolation of Adult Rat Cardiomyocytes Activates Inositol (1,4,5) Trisphosphate 3′Kinase Activity. Journal of Molecular and Cellular Cardiology, 1993, 25, 1149-1159.	1.9	7
66	ISOLATION OF ADULT CARDIOMYOCYTES INITIATES A RETURN OF INOSITOL TRISPHOSPHATE PHOSPHORYLATING ACTIVITY. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 388-391.	1.9	0