Matthew B Rettig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5934002/publications.pdf

Version: 2024-02-01

99 6,586 41 78
papers citations h-index g-index

103 103 103 9347 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Significant changes in macrophage and CD8 T cell densities in primary prostate tumors 2 weeks after SBRT. Prostate Cancer and Prostatic Diseases, 2023, 26, 207-209.	2.0	8
2	aPROMISE: A Novel Automated PROMISE Platform to Standardize Evaluation of Tumor Burden in ¹⁸ F-DCFPyL Images of Veterans with Prostate Cancer. Journal of Nuclear Medicine, 2022, 63, 233-239.	2.8	25
3	Analytical performance of aPROMISE: automated anatomic contextualization, detection, and quantification of [18F]DCFPyL (PSMA) imaging for standardized reporting. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1041-1051.	3.3	22
4	Refining the definition of biochemical failure in the era of stereotactic body radiation therapy for prostate cancer: The Phoenix definition and beyond. Radiotherapy and Oncology, 2022, 166, 1-7.	0.3	9
5	Interplay Between Duration of Androgen Deprivation Therapy and External Beam Radiotherapy With or Without a Brachytherapy Boost for Optimal Treatment of High-risk Prostate Cancer. JAMA Oncology, 2022, 8, e216871.	3.4	18
6	Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncology, The, 2022, 23, 304-316.	5.1	68
7	Novel framework for treatment response evaluation using PSMA-PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP 1.0): an international multicenter study. Journal of Nuclear Medicine, 2022, , jnumed.121.263072.	2.8	28
8	Factors that guide selection among androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer Clinical Advances in Hematology and Oncology, 2022, 20 Suppl 9, 1-20.	0.3	О
9	How patient characteristics can guide selection among androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer Clinical Advances in Hematology and Oncology, 2022, 20 Suppl 9, 9-12.	0.3	O
10	Factors that guide selection among androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer: Q&A Clinical Advances in Hematology and Oncology, 2022, 20 Suppl 9, 16-17.	0.3	0
11	A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). European Urology, 2021, 80, 280-292.	0.9	140
12	The intraprostatic immune environment after stereotactic body radiotherapy is dominated by myeloid cells. Prostate Cancer and Prostatic Diseases, 2021, 24, 135-139.	2.0	11
13	False positive PSMA PET for tumor remnants in the irradiated prostate and other interpretation pitfalls in a prospective multi-center trial. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 501-508.	3.3	30
14	Underutilization of Androgen Deprivation Therapy with External Beam Radiotherapy in Men with High-grade Prostate Cancer. European Urology Oncology, 2021, 4, 327-330.	2.6	3
15	Comparison of Multimodal Therapies and Outcomes Among Patients With High-Risk Prostate Cancer With Adverse Clinicopathologic Features. JAMA Network Open, 2021, 4, e2115312.	2.8	12
16	Radiation therapy dose and androgen deprivation therapy in localized prostate cancer: a meta-regression of 5-year outcomes in phase III randomized controlled trials. Prostate Cancer and Prostatic Diseases, 2021, , .	2.0	8
17	Patterns of Clinical Progression in Radiorecurrent High-risk Prostate Cancer. European Urology, 2021, 80, 142-146.	0.9	12
18	Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncology, The, 2021, 22, 1115-1125.	5.1	120

#	Article	IF	CITATIONS
19	Performance of a Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography–Derived Risk-Stratification Tool for High-risk and Very High-risk Prostate Cancer. JAMA Network Open, 2021, 4, e2138550.	2.8	18
20	Comparison of Response to Definitive Radiotherapy for Localized Prostate Cancer in Black and White Men. JAMA Network Open, 2021, 4, e2139769.	2.8	16
21	Highlights in prostate cancer from the 2021 European Society for Medical Oncology Congress and the 2021 American Urological Association Meeting: commentary Clinical Advances in Hematology and Oncology, 2021, 19 Suppl 23, 19-23.	0.3	0
22	Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. European Urology, 2020, 77, 201-208.	0.9	37
23	Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 316-323.	2.0	6
24	Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. Journal of Biological Chemistry, 2020, 295, 17169-17186.	1.6	19
25	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	9.4	198
26	Prostate-specific antigen kinetics and biochemical control following stereotactic body radiation therapy, high dose rate brachytherapy, and low dose rate brachytherapy: A multi-institutional analysis of 3502 patients. Radiotherapy and Oncology, 2020, 151, 26-32.	0.3	19
27	Accelerating precision medicine in metastatic prostate cancer. Nature Cancer, 2020, 1, 1041-1053.	5.7	45
28	The Impact of 18F-DCFPyL PET-CT Imaging on Initial Staging, Radiation, and Systemic Therapy Treatment Recommendations for Veterans With Aggressive Prostate Cancer. Advances in Radiation Oncology, 2020, 5, 1364-1369.	0.6	5
29	Copy Number Loss of 17q22 Is Associated with Enzalutamide Resistance and Poor Prognosis in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2020, 26, 4616-4624.	3.2	10
30	Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6204-6214.	3.2	10
31	Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12315-12323.	3.3	87
32	Impact of ⁶⁸ Ga-PSMA-11 PET on the Management of Recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. Journal of Nuclear Medicine, 2020, 61, 1793-1799.	2.8	74
33	Immune Checkpoint Blockade for Prostate Cancer: Niche Role or Next Breakthrough?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e89-e106.	1.8	17
34	Transcriptomic Heterogeneity of Gleason Grade Group 5 Prostate Cancer. European Urology, 2020, 78, 327-332.	0.9	18
35	Phase 1 Trial of Stereotactic Body Radiation Therapy Neoadjuvant to Radical Prostatectomy for Patients With High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 930-935.	0.4	12
36	Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 931.e9-931.e16.	0.8	4

#	Article	IF	CITATIONS
37	Impact of ⁶⁸ Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single-Center Study. Journal of Nuclear Medicine, 2020, 61, 1153-1160.	2.8	94
38	Arctigenin inhibits prostate tumor growth in high-fat diet fed mice through dual actions on adipose tissue and tumor. Scientific Reports, 2020, 10, 1403.	1.6	20
39	Leptomeningeal Carcinomatosis of Prostate Cancer: A Case Report and Review of the Literature. Reviews in Urology, 2020, 22, 80-84.	0.9	3
40	An 89-Year-Old Man with COVID-19-Associated Coagulopathy Presenting with a Prolonged Partial Thromboplastin Time, Lupus Anticoagulant, and a High Titer of Factor VIII Inhibitor. American Journal of Case Reports, 2020, 21, e926728.	0.3	6
41	18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncology, The, 2019, 20, 1286-1294.	5.1	338
42	The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients. Precision Clinical Medicine, 2019, 2, 131-139.	1.3	24
43	Cover Image, Volume 39, Issue 1. Medicinal Research Reviews, 2019, 39, i-i.	5.0	1
44	Germline Genetic Testing in Advanced Prostate Cancer; Practices and Barriers: Survey Results from the Germline Genetics Working Group of the Prostate Cancer Clinical Trials Consortium. Clinical Genitourinary Cancer, 2019, 17, 275-282.e1.	0.9	42
45	Synthesis of Î ² -Amino Diaryldienones Using the Mannich Reaction. Organic Letters, 2019, 21, 4039-4043.	2.4	7
46	Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer Demonstrates Intraclass Heterogeneity. Molecular Cancer Research, 2019, 17, 1235-1240.	1.5	51
47	Assessment of ⁶⁸ Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer. JAMA Oncology, 2019, 5, 856.	3.4	493
48	Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 562-571.	0.9	104
49	Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research, 2019, 79, 2580-2592.	0.4	85
50	MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 531-538.	2.0	66
51	Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Science Translational Medicine, 2019, 11 , .	5.8	63
52	Prostate Cancer Pulmonary Metastasis Presenting as a Ground-Glass Pulmonary Nodule on 68Ga-PSMA-11 PET/CT. Clinical Nuclear Medicine, 2019, 44, e353-e356.	0.7	5
53	Association of Gleason Grade With Androgen Deprivation Therapy Duration and Survival Outcomes. JAMA Oncology, 2019, 5, 91.	3.4	27
54	Molecules targeting the androgen receptor (AR) signaling axis beyond the AR‣igand binding domain. Medicinal Research Reviews, 2019, 39, 910-960.	5.0	41

#	Article	IF	Citations
55	Potential Impact of ⁶⁸ Ga-PSMA-11 PET/CT on the Planning of Definitive Radiation Therapy for Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1714-1721.	2.8	81
56	Detection Threshold and Reproducibility of ⁶⁸ Ga-PSMA11 PET/CT in a Mouse Model of Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1392-1397.	2.8	21
57	Does Specialty Bias Trump Evidence in the Management of High-risk Prostate Cancer?. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 549-557.	0.6	4
58	Discord Among Radiation Oncologists and Urologists in the Postoperative Management of High-Risk Prostate Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 739-746.	0.6	5
59	Impact of ⁶⁸ Ga-PSMA-11 PET/CT on the Management of Prostate Cancer Patients with Biochemical Recurrence. Journal of Nuclear Medicine, 2018, 59, 434-441.	2.8	113
60	Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. Journal of Clinical Oncology, 2018, 36, 2492-2503.	0.8	477
61	Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Research, 2018, 8, 96.	1.1	58
62	CD38 is methylated in prostate cancer and regulates extracellular NAD+. Cancer & Metabolism, 2018, 6, 13.	2.4	28
63	Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9986-9991.	3.3	105
64	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	13.5	459
65	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	3.0	288
66	Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting. Small, 2016, 12, 1891-1899.	5.2	41
67	Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome. Cell Reports, 2016, 17, 2596-2606.	2.9	94
68	Targeting Adaptive Pathways in Metastatic Treatment-Resistant Prostate Cancer: Update on the Stand Up 2 Cancer/Prostate Cancer Foundation–Supported West Coast Prostate Cancer Dream Team. European Urology Focus, 2016, 2, 469-471.	1.6	12
69	Androgen Receptor Modulation Optimized for Response (ARMOR) Phase I and II Studies: Galeterone for the Treatment of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 1356-1363.	3.2	71
70	Keratin 13 Is Enriched in Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone. PLoS ONE, 2016, 11, e0163232.	1.1	35
71	A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget, 2015, 6, 44781-44793.	0.8	94
72	The Crossroads of Geriatric Cardiology and Cardio-Oncology. Current Geriatrics Reports, 2015, 4, 327-337.	1.1	6

#	Article	IF	CITATIONS
73	Pomegranate extract inhibits EMT in clear cell renal cell carcinoma in a NF-κB and JNK dependent manner. Asian Journal of Urology, 2015, 2, 38-45.	0.5	9
74	YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence. Oncotarget, 2015, 6, 7470-7480.	0.8	23
75	Highâ€Purity Prostate Circulating Tumor Cell Isolation by a Polymer Nanofiberâ€Embedded Microchip for Whole Exome Sequencing. Advanced Materials, 2013, 25, 2897-2902.	11.1	142
76	Tumor Cell Isolation: Highâ€Purity Prostate Circulating Tumor Cell Isolation by a Polymer Nanofiberâ€Embedded Microchip for Whole Exome Sequencing (Adv. Mater. 21/2013). Advanced Materials, 2013, 25, 2870-2870.	11.1	1
77	CRK SH3N Domain Diminishes Cell Invasiveness of Non-Small Cell Lung Cancer. Genes and Cancer, 2013, 4, 315-324.	0.6	4
78	Hyperactivated JNK Is a Therapeutic Target in pVHL-Deficient Renal Cell Carcinoma. Cancer Research, 2013, 73, 1374-1385.	0.4	48
79	c-Crk proto-oncogene contributes to transcriptional repression of p120-catenin in non-small cell lung cancer cells. Clinical and Experimental Metastasis, 2011, 28, 391-404.	1.7	13
80	Cover Picture: Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers (Angew. Chem. Int. Ed. 13/2011). Angewandte Chemie - International Edition, 2011, 50, 2857-2857.	7.2	0
81	Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Medicine, 2010, 16, 1414-1420.	15.2	280
82	NF-κB–Dependent Plasticity of the Epithelial to Mesenchymal Transition Induced by <i>Von Hippel-Lindau</i> Inactivation in Renal Cell Carcinomas. Cancer Research, 2010, 70, 752-761.	0.4	89
83	<i>>p120-Catenin</i> Is Transcriptionally Downregulated by FOXC2 in Non–Small Cell Lung Cancer Cells. Molecular Cancer Research, 2010, 8, 762-774.	1.5	46
84	Inactivation of the CYLD Deubiquitinase by HPV E6 Mediates Hypoxia-Induced NF-κB Activation. Cancer Cell, 2008, 14, 394-407.	7.7	98
85	Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-l ^o B-dependent mechanism. Molecular Cancer Therapeutics, 2008, 7, 2662-2671.	1.9	129
86	Rabdosia rubescens inhibition of emergence of androgenâ€independent prostate cancer. FASEB Journal, 2008, 22, 889.7.	0.2	0
87	Epidermal growth factor receptor inhibition sensitizes renal cell carcinoma cells to the cytotoxic effects of bortezomib. Molecular Cancer Therapeutics, 2007, 6, 61-69.	1.9	51
88	VHL expression in renal cell carcinoma sensitizes to bortezomib (PS-341) through an NF-κB-dependent mechanism. Oncogene, 2005, 24, 1563-1570.	2.6	55
89	Mechanism of von Hippel-Lindau Protein-Mediated Suppression of Nuclear Factor kappa B Activity. Molecular and Cellular Biology, 2005, 25, 7546-7556.	1.1	100
90	AKT Activity Determines Sensitivity to Mammalian Target of Rapamycin (mTOR) Inhibitors by Regulating Cyclin D1 and c-myc Expression. Journal of Biological Chemistry, 2004, 279, 2737-2746.	1.6	302

#	Article	IF	CITATIONS
91	Age, body mass index, and serum prostate-specific antigen correlate with bone loss in men with prostate cancer not receiving androgen deprivation therapy. Urology, 2004, 64, 335-340.	0.5	39
92	Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood, 2004, 103, 222-228.	0.6	52
93	Maximal apoptosis of renal cell carcinoma by the proteasome inhibitor bortezomib is nuclear factor-kappaB dependent. Molecular Cancer Therapeutics, 2004, 3, 727-36.	1.9	41
94	Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-ÎB and JNK/AP1 pathways. Oncogene, 2003, 22, 3371-3385.	2.6	118
95	Drug interactions between the proteasome inhibitor bortezomib and cytotoxic chemotherapy, tumor necrosis factor (TNF) alpha, and TNF-related apoptosis-inducing ligand in prostate cancer. Clinical Cancer Research, 2003, 9, 4537-45.	3.2	40
96	The Kaposi sarcoma–associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood, 2002, 99, 649-654.	0.6	99
97	Rta of the human herpesvirus 8/Kaposi sarcoma–associated herpesvirus up-regulates human interleukin-6 gene expression. Blood, 2002, 100, 1919-1921.	0.6	69
98	Response from Rettig, Said and Berenson. Trends in Microbiology, 1997, 5, 425-426.	3.5	0
99	Interleukin-6: An antagonizing problem becomes a solution. Nature Biotechnology, 1997, 15, 952-953.	9.4	2