Monica Mottes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5932069/publications.pdf

Version: 2024-02-01

331670 243625 2,097 61 21 44 h-index citations g-index papers 62 62 62 2425 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Modulation of miR-204 Expression during Chondrogenesis. International Journal of Molecular Sciences, 2022, 23, 2130.	4.1	6
2	Physical Activity Modulates miRNAs Levels and Enhances MYOD Expression in Myoblasts. Stem Cell Reviews and Reports, 2022, 18, 1865-1874.	3.8	6
3	Fisetin: An Integrated Approach to Identify a Strategy Promoting Osteogenesis. Frontiers in Pharmacology, 2022, $13, \ldots$	3.5	3
4	Medication-Related Osteonecrosis of the Jaw (MRONJ): Are Antiresorptive Drugs the Main Culprits or Only Accomplices? The Triggering Role of Vitamin D Deficiency. Nutrients, 2021, 13, 561.	4.1	11
5	Control of the Autophagy Pathway in Osteoarthritis: Key Regulators, Therapeutic Targets and Therapeutic Strategies. International Journal of Molecular Sciences, 2021, 22, 2700.	4.1	20
6	Methylsulfonylmethane enhances MSC chondrogenic commitment and promotes pre-osteoblasts formation. Stem Cell Research and Therapy, 2021, 12, 326.	5.5	12
7	Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression. International Journal of Molecular Sciences, 2021, 22, 10336.	4.1	5
8	Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Reviews and Reports, 2020, 16, 33-40.	3.8	11
9	Zebrafish: A Suitable Tool for the Study of Cell Signaling in Bone. Cells, 2020, 9, 1911.	4.1	17
10	A Potential Role of RUNX2-RUNT Domain in Modulating the Expression of Genes Involved in Bone Metastases: An In Vitro Study with Melanoma Cells. Cells, 2020, 9, 751.	4.1	8
11	BEL Î ² -Trefoil Reduces the Migration Ability of RUNX2 Expressing Melanoma Cells in Xenotransplanted Zebrafish. Molecules, 2020, 25, 1270.	3.8	11
12	Molecular and Lifestyle Factors Modulating Obesity Disease. Biomedicines, 2020, 8, 46.	3.2	6
13	A potential role for astaxanthin in the treatment of bone diseases (Review). Molecular Medicine Reports, 2020, 22, 1695-1701.	2.4	9
14	Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis. Cells, 2019, 8, 742.	4.1	46
15	Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	32
16	Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6. Cells, 2019, 8, 1374.	4.1	10
17	Relationship Between Vertebral Fractures, Bone Mineral Density, and Osteometabolic Profile in HIV and Hepatitis B and C-Infected Patients Treated With ART. Frontiers in Endocrinology, 2019, 10, 302.	3.5	6
18	Runx2 stimulates neoangiogenesis through the Runt domain in melanoma. Scientific Reports, 2019, 9, 8052.	3.3	19

#	Article	lF	CITATIONS
19	Effects of Oral Anticoagulant Therapy on Gene Expression in Crosstalk between Osteogenic Progenitor Cells and Endothelial Cells. Journal of Clinical Medicine, 2019, 8, 329.	2.4	11
20	Runx2 overexpression compromises bone quality in acromegalic patients. Endocrine-Related Cancer, 2018, 25, 269-277.	3.1	21
21	Can half-marathon affect overall health? The yin-yang of sport. Journal of Proteomics, 2018, 170, 80-87.	2.4	23
22	Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). International Journal of Molecular Medicine, 2018, 41, 2441-2449.	4.0	47
23	New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration. Cells, 2018, 7, 220.	4.1	21
24	An integrated approach identifies new oncotargets in melanoma. Oncotarget, 2018, 9, 11489-11502.	1.8	10
25	Ectopic expression of the osteogenic master gene <i>RUNX2</i> in melanoma Maria Teresa Valenti, Luca Dalle Carbonare, Monica Mottes. World Journal of Stem Cells, 2018, 10, 78-81.	2.8	12
26	Clodronate as a Therapeutic Strategy against Osteoarthritis. International Journal of Molecular Sciences, 2017, 18, 2696.	4.1	22
27	Osteogenic Differentiation in Healthy and Pathological Conditions. International Journal of Molecular Sciences, 2017, 18, 41.	4.1	88
28	Enhanced Osteogenic Differentiation in Zoledronate-Treated Osteoporotic Patients. International Journal of Molecular Sciences, 2017, 18, 1261.	4.1	19
29	Role of autophagy in bone and muscle biology. World Journal of Stem Cells, 2016, 8, 396.	2.8	8
30	The recurrent causal mutation for osteogenesis imperfecta type V occurs at a highly methylated CpG dinucleotide within the IFITM5 gene. Journal of Pediatric Genetics, 2015, 03, 035-039.	0.7	6
31	Deficiency of <i>CRTAP</i> in nonâ€lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix. Clinical Genetics, 2012, 82, 453-459.	2.0	30
32	Lack of expression of <i>SERPINF1</i> , the gene coding for pigment epithelium-derived factor, causes progressively deforming osteogenesis imperfecta with normal type I collagen. Journal of Bone and Mineral Research, 2012, 27, 723-728.	2.8	73
33	Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8. Human Genetics, 2011, 130, 671-683.	3.8	8
34	Current and emerging treatments for the management of osteogenesis imperfecta. Therapeutics and Clinical Risk Management, 2010, 6, 367.	2.0	87
35	Characterization and functional analysis of cis-acting elements of the human farnesyl diphosphate synthetase (FDPS) gene 5′ flanking region. Genomics, 2009, 93, 227-234.	2.9	21
36	Rescue of Migratory Defects of Ehlers–Danlos Syndrome Fibroblasts In Vitro by Type V Collagen but not Insulin-Like Binding Protein-1. Journal of Investigative Dermatology, 2008, 128, 1915-1919.	0.7	22

#	Article	IF	Citations
37	Genetic testing for adult-type hypolactasia in Italian families. Clinical Chemistry and Laboratory Medicine, 2008, 46, 980-4.	2.3	15
38	Wound Repair Capability in EDS Fibroblasts can be Retrieved by Exogenous Type V Collagen. Scientific World Journal, The, 2008, 8, 956-958.	2.1	4
39	Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human Mutation, 2007, 28, 209-221.	2.5	620
40	The genetic background of osteoporosis in cystic fibrosis: Association analysis with polymorphic markers in four candidate genes. Journal of Cystic Fibrosis, 2006, 5, 229-235.	0.7	11
41	Osteogenesis imperfecta: clinical, biochemical and molecular findings. Clinical Genetics, 2006, 70, 131-139.	2.0	47
42	Stickler syndrome and vitreoretinal degeneration: correlation between locus mutation and vitreous phenotype. Apropos of a case. Graefe's Archive for Clinical and Experimental Ophthalmology, 2001, 239, 316-319.	1.9	20
43	Allelic Frequencies of FBN1 Gene Polymorphisms and Genetic Analysis of Italian Families with Marfan Syndrome. Human Heredity, 2000, 50, 175-179.	0.8	4
44	Autosomal dominant benign recurrent intrahepatic cholestasis (BRIC) unlinked to 18q21 and 2q24. American Journal of Medical Genetics Part A, 2000, 95, 450-453.	2.4	29
45	Osteogenesis Imperfecta. Paediatric Drugs, 2000, 2, 465-488.	3.1	69
46	Four new cases of lethal osteogenesis imperfecta due to glycine substitutions in COL1A1 and genes. Human Mutation, 1998, 12, 71-72.	2.5	11
47	Molecular genetic characterization of two metachromatic leukodystrophy patients who carry the T799G mutation and show different phenotypes; description of a novel null-type mutation. Human Genetics, 1998, 102, 459-463.	3.8	12
48	A novel mutation which represents the fifth non-pathogenic polymorphism in the coding sequence of the Arylsulfatase A gene. Molecular and Cellular Probes, 1997, 11, 449-451.	2.1	4
49	Intrafamilial variable expressivity of osteogenesis imperfecta due to mosaicism for a lethal G382R substitution in theCOL1A1gene. Molecular and Cellular Probes, 1996, 10, 219-225.	2.1	16
50	Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. Journal of Pediatrics, 1996, 129, 432-439.	1.8	114
51	A 931 + 2T → C transition in one COL1A2 allele causes exon 16 skipping in PROα2(I) mRNA and produces moderately severe Ol. Human Mutation, 1995, 6, 268-271.	2.5	6
52	A common ? hexosaminidase gene mutation in adult Sandhoff disease patients. Human Genetics, 1995, 96, 417-22.	3.8	30
53	Paternal mosaicism for a COL1A1 dominant mutation ($\hat{l}\pm 1$ Ser-415) causes recurrent osteogenesis imperfecta. Human Mutation, 1993, 2, 196-204.	2.5	40
54	Osteogenesis imprefecta and type-I collagen mutations. A lethal variant caused by a Gly910Ala substitution in the alpha1(I) chain. FEBS Journal, 1993, 211, 415-419.	0.2	11

MONICA MOTTES

#	Article	IF	CITATIONS
55	Gly85 to Val substitution in proalpha1(I) chain causes mild osteogenesis imperfecta and introduces a susceptibility to protease digestion. FEBS Journal, 1993, 217, 77-82.	0.2	15
56	Mild dominant osteogenesis imperfecta with intrafamilial variability: the cause is a serine for glycine ?1(I) 901 substitution in a type-I collagen gene. Human Genetics, 1992, 89, 480-4.	3.8	22
57	Haplotype frequencies of the collagen type-I genes in the Italian population. Human Genetics, 1989, 83, 369-372.	3.8	12
58	A new type of EcoRI polymorphism of the human ribosomal DNA repeating unit revealed by analysis of cloned DNA fragments. Gene, 1984, 27, 109-113.	2.2	16
59	Multiple forms of human dihydrofolate reductase messenger RNA. Journal of Molecular Biology, 1982, 156, 583-607.	4.2	82
60	Specific pattern of instability of Escherichia coli HisG gene cloned in Bacillus subtilis via the Staphylococcus aureus plasmid pCS194. Plasmid, 1981, 6, 99-111.	1.4	40
61	Different specific activities of the monomeric and oligomeric forms of plasmid DNA in transformation of B. subtilis and E. coli. Molecular Genetics and Genomics, 1979, 174, 281-286.	2.4	80