
Simon Phipps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5931140/publications.pdf Version: 2024-02-01

SIMON PHIDDS

#	Article	IF	CITATIONS
1	Targeting the P2Y ₁₃ Receptor Suppresses IL-33 and HMGB1 Release and Ameliorates Experimental Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 300-312.	5.6	33
2	Synergism and Antagonism of Bacterial-Viral Coinfection in the Upper Respiratory Tract. MSphere, 2022, 7, e0098421.	2.9	18
3	MLKL Regulates Rapid Cell Death-independent HMGB1 Release in RSV Infected Airway Epithelial Cells. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	3
4	IFN-λ Diminishes the Severity of Viral Bronchiolitis in Neonatal Mice by Limiting NADPH Oxidase–Induced PAD4-Independent NETosis. Journal of Immunology, 2022, 208, 2806-2816.	0.8	7
5	RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1123-1135.	5.7	14
6	A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants. ELife, 2021, 10, .	6.0	5
7	DP1 prostanoid receptor activation increases the severity of an acute lower respiratory viral infection in mice via TNF-α-induced immunopathology. Mucosal Immunology, 2021, 14, 963-972.	6.0	9
8	Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication. Cell Discovery, 2021, 7, 37.	6.7	11
9	Modulation of Vagal Sensory Neurons via High Mobility Group Box-1 and Receptor for Advanced Glycation End Products: Implications for Respiratory Viral Infections. Frontiers in Physiology, 2021, 12, 744812.	2.8	5
10	Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Frontiers in Cell and Developmental Biology, 2021, 9, 737880.	3.7	7
11	The maternal gut microbiome during pregnancy and offspring allergy and asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 669-678.	2.9	55
12	LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L641-L652.	2.9	9
13	Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biological Research, 2021, 54, 38.	3.4	13
14	PAG1 limits allergenâ€induced type 2 inflammation in the murine lung. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 336-345.	5.7	10
15	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscleÂremodelling. PLoS Pathogens, 2020, 16, e1008651.	4.7	31
16	The Contribution of Neutrophils to the Pathogenesis of RSV Bronchiolitis. Viruses, 2020, 12, 808.	3.3	28
17	Long-lived regulatory T cells generated during severe bronchiolitis in infancy influence later progression to asthma. Mucosal Immunology, 2020, 13, 652-664.	6.0	13
18	Respiratory Syncytial Virus Infection Promotes Necroptosis and HMGB1 Release by Airway Epithelial Cells. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1358-1371.	5.6	85

#	Article	IF	CITATIONS
19	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
20	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
21	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		Ο
22	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
23	A low inflammatory, Langerhans cell-targeted microprojection patch to deliver ovalbumin to the epidermis of mouse skin. Journal of Controlled Release, 2019, 302, 190-200.	9.9	10
24	Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a–mediated T reg expansion. Journal of Experimental Medicine, 2018, 215, 537-557.	8.5	65
25	A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the 3H-labelled structural lipids after pulmonary delivery in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 1-12.	4.3	42
26	The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 2316-2319.	2.9	9
27	Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. Journal of Allergy and Clinical Immunology, 2018, 141, 1607-1619.e9.	2.9	64
28	PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN- λ production. Science Translational Medicine, 2018, 10, .	12.4	49
29	The Absence of Interferon-β Promotor Stimulator-1 (IPS-1) Predisposes to Bronchiolitis and Asthma-like Pathology in Response to Pneumoviral Infection in Mice. Scientific Reports, 2017, 7, 2353.	3.3	12
30	Human Metapneumovirus Impairs Apoptosis of Nasal Epithelial Cells in Asthma via HSP70. Journal of Innate Immunity, 2017, 9, 52-64.	3.8	20
31	Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. Journal of Allergy and Clinical Immunology, 2017, 139, 1148-1157.	2.9	72
32	The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma—Food for Thought?. Frontiers in Immunology, 2017, 8, 156.	4.8	40
33	Critical Role of Plasmacytoid Dendritic Cells in Regulating Gene Expression and Innate Immune Responses to Human Rhinovirus-16. Frontiers in Immunology, 2017, 8, 1351.	4.8	12
34	Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation. JCI Insight, 2017, 2, .	5.0	12
35	RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma. ELife, 2017, 6, .	6.0	24
36	Aeroallergen-induced IL-33 predisposes to respiratory virus–induced asthma by dampening antiviral immunity. Journal of Allergy and Clinical Immunology, 2016, 138, 1326-1337.	2.9	87

#	Article	IF	CITATIONS
37	Th2/Th17 reciprocal regulation: twists and turns in the complexity of asthma phenotypes. Annals of Translational Medicine, 2016, 4, S59-S59.	1.7	16
38	Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2015, 12, 90.	7.2	69
39	Coinfection with Blood-Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus Infection but Impairs Inflammation and Viral Control in the Lung. Vaccine Journal, 2015, 22, 477-483.	3.1	20
40	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax, 2015, 70, 854-861.	5.6	90
41	Regulatory T Cells Prevent Inducible BALT Formation by Dampening Neutrophilic Inflammation. Journal of Immunology, 2015, 194, 4567-4576.	0.8	38
42	Immunomodulation of Airway Epithelium Cell Activation by Mesenchymal Stromal Cells Ameliorates House Dust Mite–Induced Airway Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 615-624.	2.9	36
43	Allergen-induced IL-6 trans-signaling activates Î ³ δT cells to promote type 2 and type 17 airway inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1065-1073.	2.9	73
44	Asthma Is Associated with Multiple Alterations in Anti-Viral Innate Signalling Pathways. PLoS ONE, 2014, 9, e106501.	2.5	47
45	Soluble Heparan Sulfate Fragments Generated by Heparanase Trigger the Release of Pro-Inflammatory Cytokines through TLR-4. PLoS ONE, 2014, 9, e109596.	2.5	187
46	Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy. Thorax, 2014, 69, 918-925.	5.6	72
47	Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation. European Journal of Immunology, 2014, 44, 1016-1030.	2.9	38
48	Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. Journal of Allergy and Clinical Immunology, 2014, 134, 440-450.e3.	2.9	133
49	Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. European Respiratory Journal, 2014, 43, 1067-1076.	6.7	221
50	The effect of hyperpolarizationâ€activated cyclic nucleotideâ€gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone. British Journal of Pharmacology, 2014, 171, 3633-3650.	5.4	8
51	IRF-3, IRF-7, and IPS-1 Promote Host Defense against Acute Human Metapneumovirus Infection in Neonatal Mice. American Journal of Pathology, 2014, 184, 1795-1806.	3.8	22
52	The plasmacytoid dendritic cell: at the cross-roads in asthma. European Respiratory Journal, 2014, 43, 264-275.	6.7	54
53	Sensorimotor circuitry involved in the higher brain control of coughing. Cough, 2013, 9, 7.	2.7	62
54	Absence of Toll–IL-1 Receptor 8/Single Immunoglobulin IL-1 Receptor–Related Molecule Reduces House Dust Mite–Induced Allergic Airway Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 481-490.	2.9	23

#	Article	IF	CITATIONS
55	RAGE and TLRs: Relatives, friends or neighbours?. Molecular Immunology, 2013, 56, 739-744.	2.2	219
56	Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. Journal of Allergy and Clinical Immunology, 2013, 131, 1331-1339.e10.	2.9	59
57	Functional Role of Soluble Receptor for Advanced Glycation End Products in Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 585-594.	2.4	72
58	The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9439-9444.	7.1	128
59	RAGE: a new frontier in chronic airways disease. British Journal of Pharmacology, 2012, 167, 1161-1176.	5.4	76
60	Innate IFNs and Plasmacytoid Dendritic Cells Constrain Th2 Cytokine Responses to Rhinovirus: A Regulatory Mechanism with Relevance to Asthma. Journal of Immunology, 2012, 188, 5898-5905.	0.8	73
61	Anterograde neuronal circuit tracing using a genetically modified herpes simplex virus expressing EGFP. Journal of Neuroscience Methods, 2012, 209, 158-167.	2.5	62
62	TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life. PLoS ONE, 2012, 7, e39460.	2.5	61
63	Evaluating vaccinia virus cytokine coâ€expression in TLR GKO mice. Immunology and Cell Biology, 2011, 89, 706-715.	2.3	17
64	Antigen-Specific T-Cell Responses to a Recombinant Fowlpox Virus Are Dependent on MyD88 and Interleukin-18 and Independent of Toll-Like Receptor 7 (TLR7)- and TLR9-Mediated Innate Immune Recognition. Journal of Virology, 2011, 85, 3385-3396.	3.4	12
65	Plasmacytoid Dendritic Cells Promote Host Defense against Acute Pneumovirus Infection via the TLR7–MyD88-Dependent Signaling Pathway. Journal of Immunology, 2011, 186, 5938-5948.	0.8	80
66	NK Cell Deficiency Predisposes to Viral-Induced Th2-Type Allergic Inflammation via Epithelial-Derived IL-25. Journal of Immunology, 2010, 185, 4681-4690.	0.8	132
67	Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunology, 2010, 3, 537-544.	6.0	106
68	Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. Journal of Allergy and Clinical Immunology, 2010, 125, 617-625.e6.	2.9	100
69	Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain, Behavior, and Immunity, 2010, 24, 83-95.	4.1	447
70	Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience, 2010, 168, 551-563.	2.3	85
71	Pulmonary Eosinophils and Their Role in Immunopathologic Responses to Formalin-Inactivated Pneumonia Virus of Mice. Journal of Immunology, 2009, 183, 604-612.	0.8	25
72	Antagonism of microRNA-126 suppresses the effector function of T _H 2 cells and the development of allergic airways disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18704-18709.	7.1	401

#	Article	IF	CITATIONS
73	Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. , 2009, 124, 86-95.		74
74	Allergic sensitization is enhanced in early life through tollâ€like receptor 7 activation. Clinical and Experimental Allergy, 2009, 39, 1920-1928.	2.9	13
75	Early production of thymic stromal lymphopoietin precedes infiltration of dendritic cells expressing its receptor in allergenâ€induced late phase cutaneous responses in atopic subjects. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1014-1022.	5.7	43
76	Toll/IL-1 Signaling Is Critical for House Dust Mite–specific Th1 and Th2 Responses. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 883-893.	5.6	148
77	Eosinophils: Biological Properties and Role in Health and Disease. Clinical and Experimental Allergy, 2008, 38, 709-750.	2.9	702
78	TLR7 Is Involved in Sequence-Specific Sensing of Single-Stranded RNAs in Human Macrophages. Journal of Immunology, 2008, 180, 2117-2124.	0.8	145
79	<i>Chlamydia muridarum</i> Infection Subverts Dendritic Cell Function to Promote Th2 Immunity and Airways Hyperreactivity. Journal of Immunology, 2008, 180, 2225-2232.	0.8	61
80	Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood, 2007, 110, 1578-1586.	1.4	263
81	Eosinophil trafficking in allergy and asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1303-1310.	2.9	341
82	The contribution of tollâ€like receptors to the pathogenesis of asthma. Immunology and Cell Biology, 2007, 85, 463-470.	2.3	49
83	Acute Allergen-Induced Airway Remodeling in Atopic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 626-632.	2.9	115
84	Interactions between eotaxin, histamine and mast cells in early microvascular events associated with eosinophil recruitment to the site of allergic skin reactions in humans. Clinical and Experimental Allergy, 2004, 34, 1276-1282.	2.9	43
85	Eosinophils in repair and remodelling. Clinical and Experimental Allergy Reviews, 2004, 4, 229-236.	0.3	3
86	Intravenous Anti-IL-5 Monoclonal Antibody Reduces Eosinophils and Tenascin Deposition in Allergen-Challenged Human Atopic Skin. Journal of Investigative Dermatology, 2004, 122, 1406-1412.	0.7	85
87	A role for eosinophils in airway remodelling in asthma. Trends in Immunology, 2004, 25, 477-482.	6.8	265
88	Differential Regulation of Human Eosinophil IL-3, IL-5, and GM-CSF Receptor α-Chain Expression by Cytokines: IL-3, IL-5, and GM-CSF Down-Regulate IL-5 Receptor α Expression with Loss of IL-5 Responsiveness, but Up-Regulate IL-3 Receptor α Expression. Journal of Immunology, 2003, 170, 5359-5366.	0.8	121
89	Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. Journal of Clinical Investigation, 2003, 112, 1029-1036.	8.2	688
90	The Relationship Between Allergen-Induced Tissue Eosinophilia and Markers of Repair and Remodeling in Human Atopic Skin. Journal of Immunology, 2002, 169, 4604-4612.	0.8	122

#	Article	IF	CITATIONS
91	The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorganic and Medicinal Chemistry, 2001, 9, 537-554.	3.0	84
92	Microarray Analysis of Eosinophils Reveals a Number of Candidate Survival and Apoptosis Genes. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 425-433.	2.9	69