Hyemin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5930762/publications.pdf

Version: 2024-02-01

15 papers	3,670 citations	14 h-index	940533 16 g-index
16	16	16	3833
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 2021, 593, 586-590.	27.8	733
2	BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nature Cell Biology, 2018, 20, 1181-1192.	10.3	565
3	Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nature Genetics, 2018, 50, 1705-1715.	21.4	561
4	Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 2020, 22, 225-234.	10.3	561
5	mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nature Communications, 2021, 12, 1589.	12.8	317
6	LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature Cell Biology, 2016, 18, 431-442.	10.3	239
7	Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nature Cell Biology, 2020, 22, 476-486.	10.3	226
8	Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nature Communications, 2017, 8, 783.	12.8	157
9	Ablation of miR-10b Suppresses Oncogene-Induced Mammary Tumorigenesis and Metastasis and Reactivates Tumor-Suppressive Pathways. Cancer Research, 2016, 76, 6424-6435.	0.9	77
10	BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3192-3197.	7.1	73
11	BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget, 2016, 7, 19134-19146.	1.8	51
12	STIM2 interacts with AMPK and regulates calciumâ€induced AMPK activation. FASEB Journal, 2019, 33, 2957-2970.	0.5	41
13	Energy stress inhibits ferroptosis via AMPK. Molecular and Cellular Oncology, 2020, 7, 1761242.	0.7	23
14	H2A Monoubiquitination Links Glucose Availability to Epigenetic Regulation of the Endoplasmic Reticulum Stress Response and Cancer Cell Death. Cancer Research, 2020, 80, 2243-2256.	0.9	21
15	Ether phospholipids govern ferroptosis. Journal of Genetics and Genomics, 2021, 48, 517-519.	3.9	12