
Greg Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5930595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, 1999, 400, 667-671.	27.8	551
2	Host Heterogeneity in Susceptibility and Disease Dynamics: Tests of a Mathematical Model. American Naturalist, 1997, 150, 685-707.	2.1	229
3	The combined effects of pathogens and predators on insect outbreaks. Nature, 2004, 430, 341-345.	27.8	222
4	A Simulation Model of the Population Dynamics and Evolution of Myxomatosis. Ecological Monographs, 1990, 60, 423-447.	5.4	200
5	Models and Data on Plant-Enemy Coevolution. Annual Review of Genetics, 2001, 35, 469-499.	7.6	157
6	Combining Populationâ€Dynamic and Ecophysiological Models to Predict Climateâ€Induced Insect Range Shifts. American Naturalist, 2006, 167, 853-866.	2.1	149
7	Pathogenâ€Driven Outbreaks in Forest Defoliators Revisited: Building Models from Experimental Data. American Naturalist, 2000, 156, 105-120.	2.1	135
8	Using Simple Models to Predict Virus Epizootics in Gypsy Moth Populations. Journal of Animal Ecology, 1993, 62, 1.	2.8	131
9	HYBRID ZONE DYNAMICS AND SPECIES REPLACEMENT BETWEEN ORCONECTES CRAYFISHES IN A NORTHERN WISCONSIN LAKE. Evolution; International Journal of Organic Evolution, 2001, 55, 1153-1166.	2.3	121
10	The Roles of Density, Stage, and Patchiness in the Transmission of an Insect Virus. Ecology, 1991, 72, 559-574.	3.2	101
11	Density Dependence and Spatial Structure in the Dynamics of Insect Pathogens. American Naturalist, 1994, 143, 533-562.	2.1	98
12	Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15693-15697.	7.1	88
13	Induced plant defenses, host–pathogen interactions, and forest insect outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14978-14983.	7.1	86
14	On the Spatial Spread of Insect Pathogens: Theory and Experiment. Ecology, 1992, 73, 479-494.	3.2	75
15	Virus Transmission in Gypsy Moths is not a Simple Mass Action Process. Ecology, 1996, 77, 201-206.	3.2	74
16	Host Dispersal and the Spatial Spread of Insect Pathogens. Ecology, 1995, 76, 1262-1275.	3.2	70
17	Hostâ€Pathogen Interactions, Insect Outbreaks, and Natural Selection for Disease Resistance. American Naturalist, 2008, 172, 829-842.	2.1	69
18	Food limitation and insect outbreaks: complex dynamics in plant–herbivore models. Journal of Animal Ecology, 2007, 76, 1004-1014.	2.8	67

GREG DWYER

#	Article	IF	CITATIONS
19	Pathogen Persistence in the Environment and Insect-Baculovirus Interactions: Disease-Density Thresholds, Epidemic Burnout, and Insect Outbreaks. American Naturalist, 2012, 179, E70-E96.	2.1	59
20	Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13573-13578.	7.1	59
21	Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecology Letters, 2011, 14, 1149-1157.	6.4	58
22	Host behaviour and exposure risk in an insect–pathogen interaction. Journal of Animal Ecology, 2010, 79, 863-870.	2.8	52
23	Spatial Scale and the Spread of a Fungal Pathogen of Gypsy Moth. American Naturalist, 1998, 152, 485-494.	2.1	48
24	Effects of host heterogeneity on pathogen diversity and evolution. Ecology Letters, 2015, 18, 1252-1261.	6.4	44
25	Resourceâ€Ðependent Dispersal and the Speed of Biological Invasions. American Naturalist, 2006, 167, 165-176.	2.1	42
26	Immigration events dispersed in space and time: Factors affecting invasion success. Ecological Modelling, 2007, 206, 63-78.	2.5	40
27	Demographic Stochasticity, Environmental Variability, and Windows of Invasion Risk for Bythotrephes Longimanus in North America. Biological Invasions, 2006, 8, 843-861.	2.4	39
28	Should Models of Disease Dynamics in Herbivorous Insects Include the Effects of Variability in Hostâ€Plant Foliage Quality?. American Naturalist, 2005, 165, 16-31.	2.1	34
29	Population Consequences of Constitutive and Inducible Plant Resistance: Herbivore Spatial Spread. American Naturalist, 1997, 149, 1071-1090.	2.1	27
30	Pathogen clumping: an explanation for non-linear transmission of an insect virus. Ecological Entomology, 2005, 30, 383-390.	2.2	22
31	Using Mechanistic Models to Understand Synchrony in Forest Insect Populations: The North American Gypsy Moth as a Case Study. American Naturalist, 2008, 172, 613-624.	2.1	21
32	Pathogen Growth in Insect Hosts: Inferring the Importance of Different Mechanisms Using Stochastic Models and Response-Time Data. American Naturalist, 2014, 184, 407-423.	2.1	20
33	The Effects of the Avoidance of Infectious Hosts on Infection Risk in an Insect-Pathogen Interaction. American Naturalist, 2015, 185, 100-112.	2.1	19
34	Effects of pathogen exposure on lifeâ€history variation in the gypsyÂmoth (<i>Lymantria dispar</i>). Journal of Evolutionary Biology, 2015, 28, 1828-1839.	1.7	17
35	Genotypeâ€byâ€genotype interactions between an insect and its pathogen. Journal of Evolutionary Biology, 2016, 29, 2480-2490.	1.7	17
36	Effects of multiple sources of genetic drift on pathogen variation within hosts. PLoS Biology, 2018, 16, e2004444.	5.6	17

GREG DWYER

#	Article	IF	CITATIONS
37	FOLIAGE DAMAGE DOES NOT AFFECT WITHIN-SEASON TRANSMISSION OF AN INSECT VIRUS. Ecology, 1998, 79, 1104-1110.	3.2	15
38	Population-level differences in disease transmission: A Bayesian analysis of multiple smallpox epidemics. Epidemics, 2013, 5, 146-156.	3.0	15
39	EVALUATING THE RISKS OF ENGINEERED VIRUSES: MODELING PATHOGEN COMPETITION. , 2001, 11, 1602-1609		13
40	Phenotypic Variation in Overwinter Environmental Transmission of a Baculovirus and the Cost of Virulence. American Naturalist, 2015, 186, 797-806.	2.1	13
41	Effects of Forest Spatial Structure on Insect Outbreaks: Insights from a Host-Parasitoid Model. American Naturalist, 2015, 185, E130-E152.	2.1	13
42	Combining principal component analysis with parameter line-searches to improve the efficacy of Metropolis–Hastings MCMC. Environmental and Ecological Statistics, 2015, 22, 247-274.	3.5	13
43	Eco-Evolutionary Theory and Insect Outbreaks. American Naturalist, 2017, 189, 616-629.	2.1	13
44	Outbreaks and interacting factors: Insect population explosions synthesized and dissected. Integrative Biology: Issues, News, and Reviews, 1998, 1, 166-177.	0.5	12
45	Combining Stochastic Models with Experiments to Understand the Dynamics of Monarch Butterfly Colonization. American Naturalist, 2005, 166, 731-750.	2.1	12
46	Foliage Damage Does Not Affect within-Season Transmission of an Insect Virus. Ecology, 1998, 79, 1104.	3.2	10
47	Stochasticity and Infectious Disease Dynamics: Density and Weather Effects on a Fungal Insect Pathogen. American Naturalist, 2020, 195, 504-523.	2.1	10
48	An Empirical Test of the Role of Small-Scale Transmission in Large-Scale Disease Dynamics. American Naturalist, 2020, 195, 616-635.	2.1	7
49	Variation in Susceptibility: Lessons from an Insect Virus. , 2002, , 74-84.		7
50	Simple Models and Complex Interactions. , 1995, , 209-227.		6
51	Can Eco-Evo Theory Explain Population Cycles in the Field?. American Naturalist, 2022, 199, 108-125.	2.1	5
52	Tracer experiment and model evidence for macrofaunal shaping of microbial nitrogen functions along rocky shores. Biogeosciences, 2016, 13, 3519-3531.	3.3	4
53	Untangling the dynamics of persistence and colonization in microbial communities. ISME Journal, 2019, 13, 2998-3010.	9.8	3
54	Use of a mechanistic growth model in evaluating post-restoration habitat quality for juvenile salmonids. PLoS ONE, 2020, 15, e0234072.	2.5	2

GREG DWYER

#	Article	IF	CITATIONS
55	Using insect baculoviruses to understand how population structure affects disease spread. , 2019, , 225-261.		1
56	Combined Effects of Natural Enemies and Competition for Resources on a Forest Defoliator: A Theoretical and Empirical Analysis. American Naturalist, 2019, 194, 807-822.	2.1	1
57	Title is missing!. , 2020, 15, e0234072.		Ο
58	Title is missing!. , 2020, 15, e0234072.		0
59	Title is missing!. , 2020, 15, e0234072.		Ο
60	Title is missing!. , 2020, 15, e0234072.		0