
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5929691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capture and Release Mechanism of Ni and La Ions via Solid/Liquid Process: Use of Polymer-Modified Clay and Activated Carbons. Polymers, 2022, 14, 485.	4.5	2
2	Capture and release mechanism of La ions by new polyamine-based organoclays: A model system for rare-earths recovery in urban mining process. Journal of Environmental Chemical Engineering, 2021, 9, 104730.	6.7	7
3	Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Industrial & Engineering Chemistry Research, 2021, 60, 6803-6813.	3.7	10
4	Natural Clays as Potential Amino Acids Carriers for Animal Nutrition Application. Applied Sciences (Switzerland), 2021, 11, 5669.	2.5	2
5	Evaluation of the Absorption of Methionine Carried by Mineral Clays and Zeolites in Porcine Ex Vivo Permeability Models. Applied Sciences (Switzerland), 2021, 11, 6384.	2.5	2
6	Rare Earths (La, Y, and Nd) Adsorption Behaviour towards Mineral Clays and Organoclays: Monoionic and Trionic Solutions. Minerals (Basel, Switzerland), 2021, 11, 30.	2.0	13
7	A study of ethanol dehydrogenation to acetaldehyde over copper/zinc aluminate catalysts. Catalysis Today, 2020, 354, 167-175.	4.4	42
8	Influence of the Degradation Medium on Water Uptake, Morphology, and Chemical Structure of Poly(Lactic Acid)-Sisal Bio-Composites. Materials, 2020, 13, 3974.	2.9	17
9	Effective Ce-based catalysts deposition on ceramic open cell foams. Applied Catalysis A: General, 2019, 584, 117089.	4.3	6
10	Polyamine-Based Organo-Clays for Polluted Water Treatment: Effect of Polyamine Structure and Content. Polymers, 2019, 11, 897.	4.5	13
11	Assessment through FT-IR of surface acidity and basicity of hydrocalumites by nitrile adsorption. Applied Clay Science, 2019, 180, 105180.	5.2	10
12	Fabrication of alginate modified brushite cement impregnated with antibiotic: Mechanical, thermal, and biological characterizations. Journal of Biomedical Materials Research - Part A, 2019, 107, 2063-2075.	4.0	11
13	Some insight on the structure/activity relationship of metal nanoparticles in Cu/SiO2 catalysts. Chinese Journal of Catalysis, 2019, 40, 1788-1794.	14.0	8
14	A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation. Applied Catalysis B: Environmental, 2019, 248, 286-297.	20.2	142
15	A study of ethanol conversion over zinc aluminate catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 503-522.	1.7	12
16	Characterization of a mesoporous Î ³ -Al2O3 catalyst: Influence of their properties on ethanol conversion. Materials Today: Proceedings, 2018, 5, 17515-17524.	1.8	4
17	Ethanol and diethyl ether catalytic conversion over commercial alumina and lanthanum-doped alumina: Reaction paths, catalyst structure and coking. Applied Catalysis B: Environmental, 2018, 236, 490-500.	20.2	42
18	3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens. Polymers, 2018, 10, 380.	4.5	40

#	Article	IF	CITATIONS
19	Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation. Materials, 2018, 11, 912.	2.9	8
20	Innovative Mesoporous Nanosilicas: SBR Nanocomposite for Low Environmental Impact Tread Tyre. Journal of Nanoscience and Nanotechnology, 2018, 18, 1503-1515.	0.9	2
21	Letter to editor for supporting "Characterization of alginate-brushite in-situ hydrogel composites― Materials Science and Engineering C, 2017, 74, 410-412.	7.3	3
22	Adsorption and separation of CO 2 from N 2 -rich gas on zeolites: Na-X faujasite vs Na-mordenite. Journal of CO2 Utilization, 2017, 19, 266-275.	6.8	28
23	A study of Cu-SAPO-34 catalysts for SCR of NOx by ammonia. Microporous and Mesoporous Materials, 2017, 241, 258-265.	4.4	23
24	Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery. Applied Catalysis B: Environmental, 2017, 210, 407-420.	20.2	49
25	New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydrate Polymers, 2017, 177, 324-333.	10.2	38
26	γ-Alumina and Amorphous Silica–Alumina: Structural Features, Acid Sites and the Role of Adsorbed Water. Topics in Catalysis, 2017, 60, 1554-1564.	2.8	35
27	Removal of VOCs by catalytic process. A study of MnZnO composites synthesized from waste alkaline and Zn/C batteries. Chemical Engineering Journal, 2017, 313, 1099-1111.	12.7	46
28	Molecular level interactions in brushite-aminoacids composites. Materials Science and Engineering C, 2017, 70, 721-727.	7.3	21
29	Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion. Applied Catalysis B: Environmental, 2017, 200, 458-468.	20.2	45
30	EFFECT OF pH IN THE SYNTHESIS OF ORGANO-CLAYS FOR RARE EARTHS REMOVAL. Environmental Engineering and Management Journal, 2017, 16, 1719-1727.	0.6	6
31	Oxidation of chlorinated alkanes over Co ₃ O ₄ /SBA-15 catalysts. Structural characterization and reaction mechanism. Catalysis Science and Technology, 2016, 6, 5618-5630.	4.1	35
32	Syngas production via steam reforming of bioethanol over Ni–BEA catalysts: A BTL strategy. International Journal of Hydrogen Energy, 2016, 41, 16878-16889.	7.1	26
33	Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study. Catalysis Today, 2016, 277, 21-28.	4.4	94
34	Bio-nanohybrid catalysts based on l-leucine immobilized in hydrotalcite and their activity in aldol reaction. Applied Catalysis A: General, 2016, 519, 116-129.	4.3	8
35	A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reforming of ethanol and phenol. Applied Catalysis B: Environmental, 2015, 174-175, 21-34.	20.2	104
36	NbP catalyst for furfural production: FT IR studies of surface properties. Applied Catalysis A: General, 2015, 502, 388-398.	4.3	32

3

#	Article	IF	CITATIONS
37	Surface chemistry and reactivity of Pd/BaCeO3â^™2ZrO2 catalyst upon sulphur hydrothermal treatment for the total oxidation of methane. Applied Catalysis A: General, 2015, 505, 183-192.	4.3	18
38	Nickel and cobalt phosphides as effective catalysts for oxygen removal of dibenzofuran: role of contact time, hydrogen pressure and hydrogen/feed molar ratio. Catalysis Science and Technology, 2015, 5, 3403-3415.	4.1	79
39	Metal Dispersion and Interaction with the Supports in the Coke Production Over Ethanol Steam Reforming Catalysts. , 2015, , 695-711.		10
40	TiO2-supported catalysts for the steam reforming of ethanol. Applied Catalysis A: General, 2014, 477, 42-53.	4.3	46
41	Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of magnesium and boron on catalytic activity in the presence and absence of sulphur. Applied Catalysis B: Environmental, 2014, 147, 813-826.	20.2	46
42	Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming. Applied Catalysis B: Environmental, 2014, 150-151, 257-267.	20.2	79
43	Catalytic conversion of ethyl acetate over faujasite zeolites. Applied Catalysis A: General, 2014, 470, 72-80.	4.3	46
44	Surface and catalytic properties of some Î ³ -Al2O3 powders. Applied Catalysis A: General, 2014, 483, 41-51.	4.3	67
45	Thermal evolution of PEG-based and BRIJ-based hybrid organo-inorganic materials. FT-IR studies. Vibrational Spectroscopy, 2014, 71, 47-56.	2.2	40
46	Redox properties of Co- and Cu-based catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 2013, 38, 3213-3225.	7.1	41
47	Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions. Journal of the European Ceramic Society, 2013, 33, 1325-1333.	5.7	30
48	Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 2013, 307, 170-184.	6.2	94
49	Optimization of BFO microwave-hydrothermal synthesis: Influence of process parameters. Journal of Alloys and Compounds, 2013, 558, 150-159.	5.5	32
50	Chitin as biosorbent for phenol removal from aqueous solution: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering and Processing: Process Intensification, 2013, 70, 131-139.	3.6	41
51	Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels. Chemical Engineering Journal, 2013, 215-216, 838-848.	12.7	38
52	Synthesis and characterization of poly-l-leucine initialized and immobilized by rehydrated hydrotalcite: understanding stability and the nature of interaction. Physical Chemistry Chemical Physics, 2013, 15, 15645.	2.8	10
53	Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 2013, 297, 93-109.	6.2	99
54	Insights into the deactivation and reactivation of Ru/TiO2 during Fischer–Tropsch synthesis. Catalysis Today, 2013, 214, 2-11.	4.4	33

#	Article	IF	CITATIONS
55	Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables. Applied Catalysis A: General, 2013, 452, 163-173.	4.3	57
56	Nickel Catalysts Supported Over TiO ₂ , SiO ₂ and ZrO ₂ for the Steam Reforming of Glycerol. ChemCatChem, 2013, 5, 294-306.	3.7	79
57	A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene. Catalysis Communications, 2013, 38, 67-73.	3.3	14
58	Effect of low-temperature high-pressure sintering on BiFeO ₃ density, electrical magnetic and structural properties. Phase Transitions, 2013, 86, 1104-1114.	1.3	5
59	Effects of pH on chromate(VI) adsorption by Spirulina platensis biomass: batch tests and FT-IR studies. Water Science and Technology, 2013, 67, 1916-1922.	2.5	7
60	K-doping of Co/Al2O3 low temperature Fischer–Tropsch catalysts. Catalysis Today, 2012, 197, 101-108.	4.4	23
61	Activation of metallic open-cell foams via washcoat deposition of Ni/MgAl2O4 catalysts for steam reforming reaction. Catalysis Today, 2012, 197, 256-264.	4.4	39
62	Thermal characterization of a montmorillonite, modified with polyethylene-glycols (PEG1500 and) Tj ETQq0 0 0 o	rgBT /Over 5.2	lock 10 Tf 50 27
63	Infrared studies of CO oxidation by oxygen and by water over Pt/Al2O3 and Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 2012, 113-114, 172-179.	20.2	48
64	Steam reforming of phenol–ethanol mixture over 5% Ni/Al2O3. Applied Catalysis B: Environmental, 2012, 113-114, 281-289.	20.2	32
65	Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Applied Catalysis B: Environmental, 2012, 117-118, 384-396.	20.2	114
66	Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: Multi-metal systems. Journal of Hazardous Materials, 2012, 217-218, 246-255.	12.4	63
67	Hybrid Organo–Inorganic Clay with Nonionic Interlayers. Mid- and Near-IR Spectroscopic Studies. Journal of Physical Chemistry A, 2011, 115, 7484-7493.	2.5	39
68	Infrared Spectroscopy of Heterogeneous Catalysts: Acidity and Accessibility of Acid Sites of Faujasite-Type Solid Acids. Journal of Physical Chemistry C, 2011, 115, 937-943.	3.1	46
69	Support effects on the structure and performance of ruthenium catalysts for the Fischer–Tropsch synthesis. Catalysis Science and Technology, 2011, 1, 1013.	4.1	46
70	Novel nanohybrid materials based on l-leucine on hydrotalcite clays: Asymmetric epoxidation reaction of chalcona. Catalysis Today, 2011, 172, 48-52.	4.4	4
71	Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chemical Engineering Journal, 2011, 173, 326-333.	12.7	119
72	A study on catalytic combustion of chlorobenzenes. Catalysis Today, 2011, 169, 3-9.	4.4	48

#	Article	IF	CITATIONS
73	CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents. Energy, 2011, 36, 314-319.	8.8	114
74	Removal of bivalent and trivalent ions by Spirulina platensis biomass: batch experiments and biosorbent characterisation. International Journal of Environmental Technology and Management, 2010, 12, 202.	0.2	8
75	Purification of landfill biogases from siloxanes by adsorption: A study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation. Chemical Engineering Journal, 2010, 165, 859-863.	12.7	49
76	Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. Journal of Catalysis, 2010, 274, 11-20.	6.2	199
77	Activation process of Pd/Al2O3 catalysts for CH4 combustion by reduction/oxidation cycles in CH4-containing atmosphere. Journal of Catalysis, 2010, 275, 218-227.	6.2	43
78	Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol. Applied Catalysis A: General, 2010, 384, 70-77.	4.3	42
79	Chromium (VI) removal by methylated biomass of Spirulina platensis: The effect of methylation process. Chemical Engineering Journal, 2010, 156, 264-269.	12.7	73
80	Sorption of Cd(II) and Pb(II) from aqueous solutions onto Agave americana fibers. Chemical Engineering Journal, 2010, 159, 67-74.	12.7	59
81	Ageing mechanisms on PdOx-based catalysts for natural gas combustion in premixed burners. Chemical Engineering Science, 2010, 65, 186-192.	3.8	10
82	Bulk and surface properties of commercial kaolins. Applied Clay Science, 2010, 48, 446-454.	5.2	92
83	Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. Journal of Catalysis, 2009, 263, 134-145.	6.2	86
84	Towards the rationalization of the washcoating process conditions. Catalysis Today, 2009, 147, S24-S29.	4.4	37
85	Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Applied Catalysis A: General, 2009, 355, 61-68.	4.3	138
86	An FT-IR study of the adsorption and reactivity of tert-butyl hydroperoxide over oxide catalysts. Applied Catalysis A: General, 2009, 369, 27-35.	4.3	27
87	Catalytic activity and long-term stability of palladium oxide catalysts for natural gas combustion: Pd supported on LaMnO3-ZrO2. Applied Catalysis B: Environmental, 2009, 92, 285-293.	20.2	21
88	Purification of Biogases from Siloxanes by Adsorption: On the Regenerability of Activated Carbon Sorbents. Energy & Fuels, 2009, 23, 4156-4159.	5.1	74
89	Oxidation of benzothiophene by tert-butyl hydroperoxide over vanadia–alumina catalyst: An FT-IR study at the vapour–solid interface. Catalysis Communications, 2009, 10, 1629-1632.	3.3	9
90	Removal and recovery of nitriles from gaseous streams: An IR study of acetonitrile adsorption on and desorption from inorganic solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 205-212.	4.7	24

#	Article	IF	CITATIONS
91	Decomposition of hexamethylcyclotrisiloxane over solid oxides. Chemosphere, 2008, 72, 1659-1663.	8.2	54
92	State of Supported Rhodium Nanoparticles for Methane Catalytic Partial Oxidation (CPO):  FT-IR Studies. Langmuir, 2007, 23, 10419-10428.	3.5	38
93	Are the active sites of protonic zeolites generated by the cavities?. Catalysis Today, 2006, 116, 132-142.	4.4	84
94	Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming. Applied Catalysis A: General, 2006, 312, 220-228.	4.3	47
95	Trichloroethylene catalytic conversion over acidic solid catalysts. Applied Catalysis B: Environmental, 2004, 51, 143-148.	20.2	34
96	Studies on the catalytic dechlorination and abatement of chlorided VOC: the cases of 2-chloropropane, 1,2-dichloropropane and trichloroethylene. Catalysis Today, 2002, 75, 263-267.	4.4	26
97	A Study of the Dehydrochlorination of 1,2-Dichloropropane over Silicaâ^'Alumina Catalysts. Industrial & Engineering Chemistry Research, 2001, 40, 3262-3269.	3.7	26
98	Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catalysis Today, 2001, 70, 213-225.	4.4	89
99	A Study of the Catalytic Dehydrochlorination of 2-Chloropropane in Oxidizing Conditions. Industrial & & & & & & & & & & & & & & & & & & &	3.7	33
100	A FT-IR study of the adsorption of C5 olefinic compounds on NaX zeolite. Vibrational Spectroscopy, 1999, 20, 85-94.	2.2	19
101	A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation. Applied Catalysis B: Environmental, 1999, 22, 249-259.	20.2	90
102	Oxygen storage capacity improvement using CeO2-ZrO2 mixed oxides in three way catalysts. Studies in Surface Science and Catalysis, 1999, , 257-262.	1.5	9
103	Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Applied Catalysis B: Environmental, 1998, 16, 43-51.	20.2	300
104	Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide. Applied Catalysis A: General, 1998, 173, 61-74.	4.3	59
105	FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces Part 3.—Comparison of the oxidation of C3 organic compounds over Co3O4, MgCr2O4 and CuO. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 175-180.	1.7	67
106	FT-IR characterization of silicated aluminas, active olefin skeletal isomerization catalysts. Catalysis Today, 1997, 33, 335-352.	4.4	64
107	FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces. Part 2.—Propane and propene oxidation on Co3O4. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1587-1593.	1.7	107
108	Characterization of α-(Fe,Al)2O3solid-solution powders. Journal of Materials Chemistry, 1995, 5, 1943-1951.	6.7	21

#	Article	IF	CITATIONS
109	FTIR study of the adsorption and transformation of allylbenzene over oxide catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1861.	1.7	16
110	FTIR studies on the selective oxidation and combustion of light hydrocarbns at metal oxide surfaces. Propane and propene oxidation on MgCr2O4. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3347.	1.7	72