
Thierry Heitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 2004, 198, 267-284.	6.0	272
2	Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover. Journal of Biological Chemistry, 2012, 287, 6296-6306.	3.4	238
3	Antimicrobial proteins in induced plant defense. Current Opinion in Immunology, 1998, 10, 16-22.	5.5	188
4	<i>LAP6/POLYKETIDE SYNTHASE A</i> and <i>LAP5/POLYKETIDE SYNTHASE B</i> Encode Hydroxyalkyl α-Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in <i>Arabidopsis thaliana</i> Â Â Â. Plant Cell, 2011, 22, 4045-4066.	6.6	188
5	Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi Â. Plant Physiology, 2010, 154, 1403-1414.	4.8	181
6	Analysis of <i>TETRAKETIDE α-PYRONE REDUCTASE</i> Function in <i>Arabidopsis thaliana</i> Reveals a Previously Unknown, but Conserved, Biochemical Pathway in Sporopollenin Monomer Biosynthesis Â. Plant Cell, 2011, 22, 4067-4083.	6.6	181
7	A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant Journal, 2009, 58, 246-259.	5.7	171
8	Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant Journal, 2000, 23, 431-440.	5.7	158
9	A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant Journal, 2005, 44, 810-825.	5.7	148
10	Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends in Plant Science, 2010, 15, 693-700.	8.8	145
11	The <i>Arabidopsis</i> Patatin-Like Protein 2 (PLP2) Plays an Essential Role in Cell Death Execution and Differentially Affects Biosynthesis of Oxylipins and Resistance to Pathogens. Molecular Plant-Microbe Interactions, 2009, 22, 469-481.	2.6	141
12	Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells. Plant Physiology, 2013, 162, 616-625.	4.8	113
13	The Amidohydrolases IAR3 and ILL6 Contribute to Jasmonoyl-Isoleucine Hormone Turnover and Generate 12-Hydroxyjasmonic Acid Upon Wounding in Arabidopsis Leaves. Journal of Biological Chemistry, 2013, 288, 31701-31714.	3.4	102
14	Jasmonic Acid Oxidase 2 Hydroxylates Jasmonic Acid and Represses Basal Defense and Resistance Responses against Botrytis cinerea Infection. Molecular Plant, 2017, 10, 1159-1173.	8.3	102
15	Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta, 2011, 234, 405-417.	3.2	72
16	CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. Journal of Experimental Botany, 2015, 66, 3879-3892.	4.8	70
17	Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cellular Microbiology, 2012, 14, 829-839.	2.1	65
18	Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant Journal, 2002, 32, 749-762.	5.7	63

THIERRY HEITZ

#	Article	IF	CITATIONS
19	The Rise and Fall of Jasmonate Biological Activities. Sub-Cellular Biochemistry, 2016, 86, 405-426.	2.4	53
20	Arabidopsis SDG8 Potentiates the Sustainable Transcriptional Induction of the Pathogenesis-Related Genes PR1 and PR2 During Plant Defense Response. Frontiers in Plant Science, 2020, 11, 277.	3.6	36
21	Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal Catabolic Pathways in Rice upon Wounding and Salt Stress. Rice, 2019, 12, 45.	4.0	31
22	Stress―and pathwayâ€specific impacts of impaired jasmonoylâ€isoleucine (JAâ€Ile) catabolism on defense signalling and biotic stress resistance. Plant, Cell and Environment, 2020, 43, 1558-1570.	5.7	29
23	Sequential oxidation of Jasmonoyl-Phenylalanine and Jasmonoyl-Isoleucine by multiple cytochrome P450 of the CYP94 family through newly identified aldehyde intermediates. Phytochemistry, 2015, 117, 388-399.	2.9	28
24	Two Apoplastic α-Amylases Are Induced in Tobacco by Virus Infection. Plant Physiology, 1991, 97, 651-656.	4.8	27
25	Involvement of the caleosin/peroxygenase RD20 in the control of cell death during Arabidopsis responses to pathogens. Plant Signaling and Behavior, 2015, 10, e991574.	2.4	27
26	OsJAZ9 overexpression modulates jasmonic acid biosynthesis and potassium deficiency responses in rice. Plant Molecular Biology, 2020, 104, 397-410.	3.9	27
27	Metabolic Control within the Jasmonate Biochemical Pathway. Plant and Cell Physiology, 2019, 60, 2621-2628.	3.1	26
28	Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana. Plants, 2016, 5, 4.	3.5	25
29	Local and Systemic Accumulationof Pathogenesis-Related Proteins in Tobacco PlantsInfected with Tobacco Mosaic Virus. Molecular Plant-Microbe Interactions, 1994, 7, 776.	2.6	22
30	The interplay of lipid acyl hydrolases in inducible plant defense. Plant Signaling and Behavior, 2010, 5, 1181-1186.	2.4	21
31	Arabidopsis CHROMATIN REMODELING 19 acts as a transcriptional repressor and contributes to plant pathogen resistance. Plant Cell, 2022, 34, 1100-1116.	6.6	13
32	Broadâ€spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis JASMONIC ACID OXIDASE mutants. Plant Journal, 2022, 109, 856-872.	5.7	10
33	ldentification of the 12-oxojasmonoyl-isoleucine, a new intermediate of jasmonate metabolism in Arabidopsis, by combining chemical derivatization and LC–MS/MS analysis. Metabolomics, 2015, 11, 991-997.	3.0	7
34	A Route for the Total Synthesis of Enantiomerically Enriched Jasmonates 12 OOHâ€JA and 12 OOHâ€JAâ European Journal of Organic Chemistry, 2015, 2015, 1130-1136.	€Ne. 2.4	6
35	Phospholipase A in Plant Immunity. Signaling and Communication in Plants, 2014, , 183-205.	0.7	3
36	Lipids Jasmonate Metabolism: Shaping Signals for Plant Stress Adaptation and Development. , 2021, , 790-803.		1

#	Article	IF	CITATIONS
37	Des dérivés d'acides gras dans la résistance des plantes aux attaques microbiennes : à la recherche d'acyle hydrolases impliquées dans la synthÃïse des oxylipines. Oleagineux Corps Gras Lipides, 2002, 9, 37-42.	0.2	0