Juan-Jesús GarcÃ-a-Vallejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Communications Biology, 2022, 5, 41.	4.4	8
2	Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nature Communications, 2021, 12, 1270.	12.8	111
3	Palmitoylated antigens for the induction of anti-tumor CD8+ TÂcells and enhanced tumor recognition. Molecular Therapy - Oncolytics, 2021, 21, 315-328.	4.4	3
4	Distinct antigen uptake receptors route to the same storage compartments for crossâ€presentation in dendritic cells. Immunology, 2021, 164, 494-506.	4.4	8
5	Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1176, 122586.	2.3	7
6	CD169 Defines Activated CD14+ Monocytes With Enhanced CD8+ T Cell Activation Capacity. Frontiers in Immunology, 2021, 12, 697840.	4.8	33
7	Adaptable antigen matrix platforms for peptide vaccination strategies and T cell-mediated anti-tumor immunity. Biomaterials, 2020, 262, 120342.	11.4	7
8	Ipilimumab plus nivolumab and chemoradiotherapy followed by surgery in patients with resectable and borderline resectable T3-4N0–1 non-small cell lung cancer: the INCREASE trial. BMC Cancer, 2020, 20, 764.	2.6	18
9	Glioblastomas exploit truncated O <i>-</i> linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3693-3703.	7.1	57
10	Immune involvement of the contralateral hemisphere in a glioblastoma mouse model. , 2020, 8, e000323.		6
11	Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation. Journal of Neuroinflammation, 2019, 16, 130.	7.2	23
12	Glycan modification of glioblastomaâ€derived extracellular vesicles enhances receptorâ€mediated targeting of dendritic cells. Journal of Extracellular Vesicles, 2019, 8, 1648995.	12.2	72
13	Glycan-Modified Melanoma-Derived Apoptotic Extracellular Vesicles as Antigen Source for Anti-Tumor Vaccination. Cancers, 2019, 11, 1266.	3.7	47
14	OMIPâ€054: Broad Immune Phenotyping of Innate and Adaptive Leukocytes in the Brain, Spleen, and Bone Marrow of an Orthotopic Murine Glioblastoma Model by Mass Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 422-426.	1.5	16
15	Glyco-Dendrimers as Intradermal Anti-Tumor Vaccine Targeting Multiple Skin DC Subsets. Theranostics, 2019, 9, 5797-5809.	10.0	48
16	Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. Journal of Extracellular Vesicles, 2018, 7, 1446660.	12.2	64
17	Functional CD169 on Macrophages Mediates Interaction with Dendritic Cells for CD8+ T Cell Cross-Priming. Cell Reports, 2018, 22, 1484-1495.	6.4	106
18	Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. Journal of Cell Biology, 2018, 217, 1129-1142.	5.2	227

#	Article	IF	CITATIONS
19	Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme and Microbial Technology, 2018, 117, 45-55.	3.2	12
20	Mouse DC-SIGN/CD209a as Target for Antigen Delivery and Adaptive Immunity. Frontiers in Immunology, 2018, 9, 990.	4.8	35
21	Toll-Like Receptor 4 Triggering Promotes Cytosolic Routing of DC-SIGN-Targeted Antigens for Presentation on MHC Class I. Frontiers in Immunology, 2018, 9, 1231.	4.8	43
22	Langerin-mediated internalization of a modified peptide routes antigens to early endosomes and enhances cross-presentation by human Langerhans cells. Cellular and Molecular Immunology, 2017, 14, 360-370.	10.5	37
23	Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy. Scientific Reports, 2017, 7, 46748.	3.3	34
24	Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis, 2017, 20, 533-546.	7.2	71
25	Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin. Frontiers in Immunology, 2017, 8, 264.	4.8	29
26	Neuroinflammation: Microglia and T Cells Get Ready to Tango. Frontiers in Immunology, 2017, 8, 1905.	4.8	257
27	The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathogens, 2016, 12, e1005696.	4.7	68
28	N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Molecular and Cellular Proteomics, 2016, 15, 124-140.	3.8	72
29	New roles for CD14 and ILâ€Î² linking inflammatory dendritic cells to ILâ€17 production in memory CD4 + T cells. Immunology and Cell Biology, 2016, 94, 907-916.	2.3	19
30	Human cytomegalovirus-based immunotherapy to treat glioblastoma: Into the future. Oncolmmunology, 2016, 5, e1214791.	4.6	2
31	A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cellular and Molecular Life Sciences, 2016, 73, 4685-4699.	5.4	21
32	Moderate hyperoxic versus near-physiological oxygen targets during and after coronary artery bypass surgery: a randomised controlled trial. Critical Care, 2016, 20, 55.	5.8	54
33	Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3329-3334.	7.1	135
34	Apoptotic vesicles as tumor vaccine. Immunotherapy, 2016, 8, 5-8.	2.0	3
35	Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells. ELife, 2016, 5, .	6.0	24
36	Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration. ELife, 2016, 5, .	6.0	37

#	Article	IF	CITATIONS
37	Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells. PLoS ONE, 2015, 10, e0143519.	2.5	18
38	Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. Journal of Controlled Release, 2015, 203, 67-76.	9.9	68
39	DC-SIGN: The Strange Case of Dr. Jekyll and Mr. Hyde. Immunity, 2015, 42, 983-985.	14.3	30
40	MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. Journal of Controlled Release, 2015, 216, 37-46.	9.9	64
41	The Consequences of Multiple Simultaneous C-Type Lectin–Ligand Interactions: DCIR Alters the Endo-Lysosomal Routing of DC-SIGN. Frontiers in Immunology, 2015, 6, 87.	4.8	23
42	In situ Delivery of Antigen to DC-SIGN + CD14 + Dermal Dendritic Cells Results in Enhanced CD8 + T-Cell Responses. Journal of Investigative Dermatology, 2015, 135, 2228-2236.	0.7	35
43	mTOR Inhibition Per Se Induces Nuclear Localization of FOXP3 and Conversion of Invariant NKT (iNKT) Cells into Immunosuppressive Regulatory iNKT Cells. Journal of Immunology, 2015, 195, 2038-2045.	0.8	23
44	Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol. Vascular Pharmacology, 2015, 75, 7-18.	2.1	7
45	A new cellular target for <i>Yersinia pestis</i> . Immunology and Cell Biology, 2015, 93, 769-770.	2.3	3
46	DC-SIGN. C-Type Lectin with Prominent Role in Immune System. , 2015, , 649-659.		3
47	Galectin-2 Induces a Proinflammatory, Anti-Arteriogenic Phenotype in Monocytes and Macrophages. PLoS ONE, 2015, 10, e0124347.	2.5	51
48	Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer. Frontiers in Immunology, 2014, 5, 149.	4.8	106
49	Glycosylation-Dependent Lectin-Receptor Interactions Preserve Angiogenesis in Anti-VEGF Refractory Tumors. Cell, 2014, 156, 744-758.	28.9	423
50	Effective Targeting of DC-SIGN by α-Fucosylamide Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2014, 25, 2244-2251.	3.6	50
51	DCIR interacts with ligands from both endogenous and pathogenic origin. Immunology Letters, 2014, 158, 33-41.	2.5	47
52	CNS myelin induces regulatory functions of DC-SIGN–expressing, antigen-presenting cells via cognate interaction with MOG. Journal of Experimental Medicine, 2014, 211, 1465-1483.	8.5	104
53	CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood, 2014, 123, 717-724.	1.4	53
54	DC-SIGN. A C-Type Lectin with a Prominent Role in the Immune System. , 2014, , 1-12.		0

#	Article	IF	CITATIONS
55	Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Molecular Immunology, 2013, 55, 143-145.	2.2	105
56	Enhanced glycan nanoprofiling by weak anion exchange preparative chromatography, mild acid desialylation, and nanoliquid chromatographyâ€mass spectrometry with nanofluorescence detection. Electrophoresis, 2013, 34, 2350-2356.	2.4	11
57	Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Molecular Immunology, 2013, 53, 387-397.	2.2	96
58	The physiological role of DC-SIGN: A tale of mice and men. Trends in Immunology, 2013, 34, 482-486.	6.8	167
59	MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. Journal of Leukocyte Biology, 2013, 94, 315-323.	3.3	91
60	Glycodendrimers prevent HIV transmission via DC-SIGN on dendritic cells. International Immunology, 2013, 25, 221-233.	4.0	50
61	Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncolmmunology, 2013, 2, e23040.	4.6	34
62	Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development. Frontiers in Immunology, 2013, 4, 157.	4.8	57
63	Human T Cell Activation Results in Extracellular Signal-regulated Kinase (ERK)-Calcineurin-dependent Exposure of Tn Antigen on the Cell Surface and Binding of the Macrophage Galactose-type Lectin (MGL)*. Journal of Biological Chemistry, 2013, 288, 27519-27532.	3.4	27
64	Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells. Frontiers in Immunology, 2013, 4, 103.	4.8	32
65	Analytical Tools for the Study of Cellular Glycosylation in the Immune System. Frontiers in Immunology, 2013, 4, 451.	4.8	18
66	Ligand Binding and Signaling of Dendritic Cell Immunoreceptor (DCIR) Is Modulated by the Glycosylation of the Carbohydrate Recognition Domain. PLoS ONE, 2013, 8, e66266.	2.5	39
67	Antigen-Presenting Cells in the Central Nervous System. , 2013, , 71-94.		1
68	CMV-Specific CD8+ T-CELL Function Is NOT Impaired In CLL. Blood, 2013, 122, 2862-2862.	1.4	0
69	BODIPY-Labeled DC-SIGN-Targeting Glycodendrons Efficiently Internalize and Route to Lysosomes in Human Dendritic Cells. Biomacromolecules, 2012, 13, 3209-3219.	5.4	35
70	Online nanoliquid chromatography–mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis. Analytical Biochemistry, 2012, 423, 153-162.	2.4	33
71	Sortase A as a tool for highâ€yield histatin cyclization. FASEB Journal, 2011, 25, 2650-2658.	0.5	83
72	Campylobacter jejuni Lipooligosaccharides Modulate Dendritic Cell-Mediated T Cell Polarization in a Sialic Acid Linkage-Dependent Manner. Infection and Immunity, 2011, 79, 2681-2689.	2.2	72

#	Article	IF	CITATIONS
73	A Polymorphism in the Coding Region of <i>ll12b</i> Promotes IL-12p70 and IL-23 Heterodimer Formation. Journal of Immunology, 2011, 186, 3572-3580.	0.8	16
74	The release of cytokines by macrophages is not affected by myelin ingestion. Glia, 2010, 58, 1928-1936.	4.9	10
75	Targeting siglec-E on murine dendritic cells inhibits antigen presentation and CD4 and CD8 t cell responses. Annals of the Rheumatic Diseases, 2010, 69, A42-A42.	0.9	0
76	TLR Triggering on Tolerogenic Dendritic Cells Results in TLR2 Up-Regulation and a Reduced Proinflammatory Immune Program. Journal of Immunology, 2009, 183, 2984-2994.	0.8	91
77	Endogenous ligands for Câ€ŧype lectin receptors: the true regulators of immune homeostasis. Immunological Reviews, 2009, 230, 22-37.	6.0	107
78	Characterization of murine MGL1 and MGL2 C-type lectins: Distinct glycan specificities and tumor binding properties. Molecular Immunology, 2009, 46, 1240-1249.	2.2	86
79	Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and Il presentation. Molecular Immunology, 2009, 47, 164-174.	2.2	109
80	Interaction of Polysialic Acid with CCL21 Regulates the Migratory Capacity of Human Dendritic Cells. PLoS ONE, 2009, 4, e6987.	2.5	37
81	Glycan modification of the tumor antigen gp100 targets DCâ€SIGN to enhance dendritic cell induced antigen presentation to T cells. International Journal of Cancer, 2008, 122, 839-846.	5.1	46
82	Involvement of α 1â€2â€fucosyltransferase I (FUT1) and surfaceâ€expressed lewis ^y (CD174) in first endothelial cell–cell contacts during angiogenesis. Journal of Cellular Physiology, 2008, 215, 27-36.	4.1	41
83	Dendritic cells and Câ€ŧype lectin receptors: coupling innate to adaptive immune responses. Immunology and Cell Biology, 2008, 86, 580-587.	2.3	164
84	DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through LewisY antigen expressed on ICAM-2. Molecular Immunology, 2008, 45, 2359-2369.	2.2	62
85	Nuclear targeting of β-catenin and p120ctn during thrombin-induced endothelial barrier dysfunction. Cardiovascular Research, 2008, 79, 679-688.	3.8	30
86	Dendritic Cell Maturation Results in Pronounced Changes in Glycan Expression Affecting Recognition by Siglecs and Galectins. Journal of Immunology, 2007, 179, 8216-8224.	0.8	117
87	P-Selectin Glycoprotein Ligand-1 Is Expressed on Endothelial Cells and Mediates Monocyte Adhesion to Activated Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1023-1029.	2.4	87
88	Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Molecular Immunology, 2007, 44, 2605-2615.	2.2	219
89	The glycosylation of thymic microenvironments. Immunology Letters, 2007, 110, 65-73.	2.5	17
90	Gene Expression Analysis of Glycosylation-Related Genes by Real-Time Polymerase Chain Reaction. , 2006, 347, 187-210.		23

Juan-JesÃ⁰s GarcÃa-Vallejo

#	Article	IF	CITATIONS
91	Expression of aberrantly glycosylated tumor mucin-1 on human DC after transduction with a fiber-modified adenoviral vector. Cytotherapy, 2006, 8, 24-35.	0.7	13
92	Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Letters, 2006, 580, 6123-6131.	2.8	241
93	Recognition of tumor glycans by antigen-presenting cells. Current Opinion in Immunology, 2006, 18, 105-111.	5.5	82
94	Activation of human endothelial cells by tumor necrosis factor-α results in profound changes in the expression of glycosylation-related genes. Journal of Cellular Physiology, 2006, 206, 203-210.	4.1	64
95	Convergent Actions of lκB Kinase β and Protein Kinase Cδ Modulate mRNA Stability through Phosphorylation of 14-3-3β Complexed with Tristetraprolin. Molecular and Cellular Biology, 2005, 25, 6454-6463.	2.3	55
96	Activated human PMN synthesize and release a strongly fucosylated glycoform of α1-acid glycoprotein, which is transiently deposited in human myocardial infarction. Journal of Leukocyte Biology, 2005, 78, 453-461.	3.3	30
97	Tumor Necrosis Factor-α Up-regulates the Expression of β1,4-Galactosyltransferase I in Primary Human Endothelial Cells by mRNA Stabilization. Journal of Biological Chemistry, 2005, 280, 12676-12682.	3.4	31
98	Acute phase response in patients undergoing lumbar spinal surgery: modulation by perioperative treatment with naproxen and famotidine. European Spine Journal, 2004, 13, 367-73.	2.2	22
99	Transfusion of post-operative shed blood: laboratory characteristics and clinical utility. European Spine Journal, 2004, 13, S107-S113.	2.2	55
100	Approach for defining endogenous reference genes in gene expression experiments. Analytical Biochemistry, 2004, 329, 293-299.	2.4	94
101	Detection and removal of fat particles from postoperative salvaged blood in orthopedic surgery. Transfusion, 2002, 42, 66-75.	1.6	45
102	Postoperative blood salvage and reinfusion in spinal surgery: blood quality, effectiveness and impact on patient blood parameters. European Spine Journal, 2000, 9, 458-465.	2.2	54