Gonzalo Blay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5926964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Highly Asymmetric Henry Reaction Catalyzed by Cu ^{II} and a <i>C</i> ₁ ‣ymmetric Aminopyridine Ligand, and Its Application to the Synthesis of Miconazole. Chemistry - A European Journal, 2008, 14, 4725-4730.	3.3	177
2	Organocatalytic Asymmetric Addition of Naphthols and Electronâ€Rich Phenols to Isatinâ€Derived Ketimines: Highly Enantioselective Construction of Tetrasubstituted Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 6320-6324.	13.8	127
3	Highly Enantioselective Friedelâ^'Crafts Alkylations of Indoles with Simple Enones Catalyzed by Zirconium(IV)â^'BINOL Complexesâ€. Organic Letters, 2007, 9, 2601-2604.	4.6	123
4	A Convenient Procedure for the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes. Organic Letters, 2005, 7, 4569-4572.	4.6	109
5	Long-Range Magnetic Coupling through Extended π-Conjugated Aromatic Bridges in Dinuclear Copper(II) Metallacyclophanes. Journal of the American Chemical Society, 2003, 125, 10770-10771.	13.7	103
6	Recent Developments in Asymmetric Alkynylation of Imines. Current Organic Chemistry, 2009, 13, 1498-1539.	1.6	99
7	Enantioselective Henry reaction catalyzed with copper(II)–iminopyridine complexes. Tetrahedron: Asymmetry, 2007, 18, 1603-1612.	1.8	91
8	Highly enantioselective aza-Henry reaction with isatin <i>N</i> Boc ketimines. Chemical Communications, 2014, 50, 9309-9312.	4.1	76
9	Modular iminopyridine ligands. Application to the enantioselective copper(II)-catalyzed Henry reaction. Tetrahedron: Asymmetry, 2006, 17, 2046-2049.	1.8	75
10	Enantioselective Zirconium-Catalyzed Friedelâ^'Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Organic Letters, 2009, 11, 441-444.	4.6	73
11	Organocatalytic Enantioselective Friedel–Crafts Aminoalkylation of Indoles in the Carbocyclic Ring. ACS Catalysis, 2016, 6, 2689-2693.	11.2	70
12	Recent Advances in Photocatalytic Functionalization of Quinoxalinâ€2â€ones. European Journal of Organic Chemistry, 2020, 2020, 6148-6172.	2.4	70
13	Highly Enantioselective Zinc/Binol atalyzed Alkynylation of <i>N</i> â€6ulfonyl Aldimines. Angewandte Chemie - International Edition, 2008, 47, 5593-5596.	13.8	69
14	Synthesis of Functionalized Indoles with a Trifluoromethylâ€Substituted Stereogenic Tertiary Carbon Atom Through an Enantioselective Friedel–Crafts Alkylation with βâ€Trifluoromethylâ€Î±,l²â€enones. Chemistry - A European Journal, 2010, 16, 9117-9122.	y 3.3	68
15	Bis(oxazoline) Lewis Acid Catalyzed Aldol Reactions of PyridineN-Oxide Aldehydes—Synthesis of Optically Active 2-(1-Hydroxyalkyl)pyridine Derivatives: Development, Scope, and Total Synthesis of an Indolizine Alkaloid. Chemistry - A European Journal, 2006, 12, 3472-3483.	3.3	64
16	Enantioselective Henry Addition of Methyl 4-Nitrobutyrate to Aldehydes. Chiral Building Blocks for 2-Pyrrolidinones and Other Derivatives. Organic Letters, 2010, 12, 3058-3061.	4.6	63
17	2-Alkenoyl PyridineN-Oxides, Highly Efficient Dienophiles for the Enantioselective Cu(II)â^Bis(oxazoline) Catalyzed Dielsâ [~] Alder Reactionâ€. Organic Letters, 2007, 9, 1983-1986.	4.6	62
18	Catalytic asymmetric conjugate addition of terminal alkynes to β-trifluoromethyl α,β-enones. Chemical Communications, 2014, 50, 2275-2278.	4.1	58

#	Article	IF	CITATIONS
19	Development of New N,N-Ligands for the Enantioselective Copper(II)-Catalyzed Henry Reaction. Synlett, 2011, 2011, 1195-1211.	1.8	57
20	A catalytic highly enantioselective direct synthesis of 2-bromo-2-nitroalkan-1-ols through a Henry reaction. Chemical Communications, 2008, , 4840.	4.1	52
21	Organocatalytic Enantioselective Alkylation of Pyrazolâ€3â€ones with Isatinâ€Derived Ketimines: Stereocontrolled Construction of Vicinal Tetrasubstituted Stereocenters. Advanced Synthesis and Catalysis, 2016, 358, 1583-1588.	4.3	52
22	Catalytic Asymmetric Addition of Dimethylzinc to α-Ketoesters, Using Mandelamides as Ligands. Organic Letters, 2006, 8, 1287-1290.	4.6	51
23	Catalytic enantioselective Friedel–Crafts alkylation at the 2-position of indole with simple enones. Tetrahedron Letters, 2007, 48, 6731-6734.	1.4	51
24	Alkane oxidation by a carboxylate-bridged dimanganese(III) complex. Chemical Communications, 2001, , 2102-2103.	4.1	50
25	Highly Enantioselective Nitrone Cycloadditions with 2-Alkenoyl PyridineN-Oxides Catalyzed by Cu(II)â^'BOX Complexes. Organic Letters, 2011, 13, 402-405.	4.6	49
26	Catalytic Enantioselective Conjugate Alkynylation of β-Aryl-β-trifluoromethyl Enones Constructing Propargylic All-Carbon Quaternary Stereogenic Centers. Organic Letters, 2016, 18, 3538-3541.	4.6	49
27	Enantioselective addition of nitromethane to α-keto esters catalyzed by copper(<scp>ii</scp>)–iminopyridine complexes. Organic and Biomolecular Chemistry, 2008, 6, 468-476.	2.8	48
28	Catalytic Enantioselective Friedel–Crafts Reactions of Naphthols and Electron-Rich Phenols. Synthesis, 2016, 48, 2151-2164.	2.3	46
29	Enantioselective addition of dimethylzinc to aldehydes catalyzed by N-substituted mandelamide-Ti(IV) complexes. Tetrahedron: Asymmetry, 2005, 16, 1953-1958.	1.8	45
30	Synthesis of (S)-(+)-sotalol and (R)-(â^')-isoproterenol via a catalytic enantioselective Henry reaction. Tetrahedron: Asymmetry, 2010, 21, 578-581.	1.8	45
31	Hydroxy-Directed Enantioselective Hydroxyalkylation in the Carbocyclic Ring of Indoles. Organic Letters, 2017, 19, 1546-1549.	4.6	45
32	Chemistry and reactivity of dinuclear manganese oxamate complexes: Aerobic catechol oxidation catalyzed by high-valent bis(oxo)-bridged dimanganese(IV) complexes with a homologous series of binucleating 4,5-disubstituted-o-phenylenedioxamate ligands. Journal of Molecular Catalysis A, 2006, 2002	4.8	44
33	Chiral bis(amino alcohol)oxalamides as ligands for asymmetric catalysis. Ti(IV) catalyzed enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 2005, 16, 1207-1213.	1.8	43
34	A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Organic Letters, 2019, 21, 6011-6015.	4.6	43
35	A Hydrogen-Bonded Supramolecular meso-Helix. European Journal of Organic Chemistry, 2003, 2003, 1627-1630.	2.4	42
36	Highly Enantio―and Diastereoselective Inverse Electron Demand Heteroâ€Diels–Alder Reaction using 2â€Alkenoylpyridine <i>N</i> â€Oxides as <i>Oxo</i> â€Heterodienes. Advanced Synthesis and Catalysis, 2009, 351, 107-111.	4.3	42

#	Article	IF	CITATIONS
37	Enantioselective Synthesis of 4â€Substituted Dihydrocoumarins through a Zinc Bis(hydroxyamide)â€Catalyzed Conjugate Addition of Terminal Alkynes. Advanced Synthesis and Catalysis, 2013, 355, 1071-1076.	4.3	42
38	Mandelamideâ^'Zinc-Catalyzed Enantioselective Alkyne Addition to Heteroaromatic Aldehydes#. Journal of Organic Chemistry, 2006, 71, 6674-6677.	3.2	41
39	Stereoselective Synthesis of 7,11-Guaien-8,12-olides from Santonin. Synthesis of Podoandin and (+)-Zedolactone A. Journal of Organic Chemistry, 2000, 65, 6703-6707.	3.2	40
40	Enantioselective La ^{III} â€pyBOXâ€Catalyzed Nitroâ€Michael Addition to (<i>E</i>)â€2â€Azachalcones European Journal of Organic Chemistry, 2013, 2013, 1696-1705.	^{3.} 2.4	40
41	Enantioselective Zincâ€Mediated Conjugate Addition of Terminal Alkynes to Enones. Chemistry - A European Journal, 2012, 18, 12966-12969.	3.3	39
42	Synthesis of Spirovetivane Sesquiterpenes from Santonin. Synthesis of (+)-Anhydro-β-rotunol and All Diastereomers of 6,11-Spirovetivadiene. Journal of Organic Chemistry, 2004, 69, 7294-7302.	3.2	38
43	Organocatalytic enantioselective aza-Friedel–Crafts reaction of 2-naphthols with benzoxathiazine 2,2-dioxides. RSC Advances, 2015, 5, 60101-60105.	3.6	37
44	Synthesis of Plagiochiline N from Santonin. Journal of Organic Chemistry, 2001, 66, 7700-7705.	3.2	35
45	Enantioselective Addition of Nitromethane to 2-Acylpyridine N-Oxides. Expanding the Generation of Quaternary Stereocenters with the Henry Reaction. Organic Letters, 2014, 16, 1204-1207.	4.6	35
46	Ultrasound assisted reductive cleavage of eudesmane and guaiane γ-enonelactones. Synthesis of 1α,7α,10αH-guaian-4,11-dien-3-one and hydrocolorenone from santonin. Tetrahedron, 2001, 57, 9719-9725.	1.9	34
47	Enantioselective Synthesis of Tertiary Alcohols through a Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrroles with α-Ketoesters. Journal of Organic Chemistry, 2011, 76, 6286-6294.	3.2	34
48	Catalytic enantioselective addition of terminal alkynes to aromatic aldehydes using zinc-hydroxyamide complexes. Organic and Biomolecular Chemistry, 2009, 7, 4301.	2.8	33
49	Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - an Asian Journal, 2016, 11, 1532-1536.	3.3	33
50	Organocatalytic Enantioselective 1,6â€ <i>aza</i> â€Michael Addition of Isoxazolinâ€5â€ones to <i>p</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 627-630.	2.4	33
51	Highly Diastereoselective Arylation of (S)-Mandelic Acid Enolate:Â Enantioselective Synthesis of Substituted (R)-3-Hydroxy-3-phenyloxindoles and (R)-Benzylic Acids and Synthesis of Nitrobenzophenones#. Journal of Organic Chemistry, 2004, 69, 6821-6829.	3.2	32
52	Chemistry and reactivity of mononuclear manganese oxamate complexes: Oxidative carbon–carbon bond cleavage of vic-diols by dioxygen and aldehydes catalyzed by a trans-dipyridine manganese(III) complex with a tetradentate o-phenylenedioxamate ligand. Journal of Molecular Catalysis A, 2006, 243, 214-220	4.8	31
53	Synthesis of Functionalized Indoles with an αâ€Stereogenic Ketone Moiety Through an Enantioselective Friedel–Crafts Alkylation with (<i>E</i>)â€1,4â€Diarylâ€2â€buteneâ€1,4â€diones. Advanced Synthesis and Cat 2009, 351, 2433-2440.	ałysis,	30
54	The Construction of Quaternary Stereocenters by the Henry Reaction: Circumventing the Usual Reactivity of Substituted Glyoxals. Chemistry - A European Journal, 2011, 17, 3768-3773.	3.3	30

#	Article	IF	CITATIONS
55	The reduction of α,β-unsaturated nitriles and α-halonitriles with sodium hydrogen telluride. Tetrahedron, 1996, 52, 8611-8618.	1.9	29
56	Enantioselective Zinc/BINOL atalysed Alkynylation of Aldimines Generated in Situ from αâ€Amido Sulfones. Chemistry - A European Journal, 2012, 18, 2440-2444.	3.3	29
57	Organocatalytic Enantioselective Friedel–Crafts Alkylation of 1â€Naphthol Derivatives and Activated Phenols with Ethyl Trifluoropyruvate. Advanced Synthesis and Catalysis, 2015, 357, 3047-3051.	4.3	29
58	Stereoselective Synthesis of 4α-Hydroxy-8,12-Guaianolides from Santonin. Journal of Organic Chemistry, 2000, 65, 2138-2144.	3.2	28
59	Catalytic aerobic oxidative decarboxylation of α-trifluoromethyl-α-hydroxy acids to trifluoromethyl ketones. Tetrahedron, 2002, 58, 8565-8571.	1.9	27
60	Asymmetric Conjugate Addition of Malonate Esters to α,βâ€Unsaturated <i>N</i> ‣ulfonyl Imines: An Expeditious Route to Chiral δâ€Aminoesters and Piperidones. Chemistry - A European Journal, 2013, 19, 14861-14866.	3.3	27
61	Stereoselective Synthesis of 8,12-Furanoeudesmanes from Santonin. Absolute Stereochemistry of Natural Furanoeudesma-1,3-diene and Tubipofuraneâ€. Journal of Organic Chemistry, 1996, 61, 3815-3819.	3.2	26
62	Regio- and stereoselective oxyfunctionalization at C-1 and C-5 in sesquiterpene guaianolides. Tetrahedron, 1998, 54, 1845-1852.	1.9	26
63	Azaâ€Henry Reaction of Isatin Ketimines with Methyl 4â€Nitrobutyrate en Route to Spiro[piperidineâ€3,3′â€oxindoles]. Advanced Synthesis and Catalysis, 2015, 357, 3857-3862.	4.3	26
64	Enantioselective Synthesis of 5-Trifluoromethyl-2-oxazolines under Dual Silver/Organocatalysis. Journal of Organic Chemistry, 2019, 84, 314-325.	3.2	26
65	Functionality transfer from C6 to C8 in sesquiterpenes. Synthesis of 8-epi-ivangustin and 8-epi-isoivangustin from santonin. Journal of Organic Chemistry, 1991, 56, 6172-6175.	3.2	25
66	Catalytic aerobic oxidative decarboxylation of α-hydroxy-acids. Methyl mandelate as a benzoyl anion equivalent. Tetrahedron Letters, 1998, 39, 3327-3330.	1.4	25
67	Synthesis of (+)-pechueloic acid and (+)-aciphyllene. Revision of the structure of (+)-aciphyllene. Tetrahedron, 2007, 63, 9621-9626.	1.9	25
68	Highly Enantioselective Copper(I)â€Catalyzed Conjugate Addition of Terminal Alkynes to 1,1â€Difluoroâ€1â€(phenylsulfonyl)â€3â€enâ€2â€ones: New Ester/Amide Surrogates in Asymmetric Catalysis. Ch - A European Journal, 2014, 20, 668-672.	1 emi stry	25
69	Rearrangement of 4,5-Epoxy-9-trimethylsilyldecalines. Application to the Synthesis of the Natural Eremophilane (â^')-Aristolochene. Journal of Organic Chemistry, 2006, 71, 4929-4936.	3.2	24
70	Synthesis of Densely Functionalised 5â€Halogenâ€1,3â€oxazinâ€2â€ones by Halogenâ€Mediated Regioselective Cyclisation of <i>N</i> â€Cbzâ€Protected Propargylic Amines: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2013, 19, 14852-14860.	3.3	24
71	Highly enantioselective copper(<scp>i</scp>)-catalyzed conjugate addition of 1,3-diynes to α,β-unsaturated trifluoromethyl ketones. Chemical Communications, 2015, 51, 8958-8961.	4.1	24
72	Synthesis of (+)-Isoalantolactone and (+)-Isoalloalantolactone from (â^')-Santonin. Tetrahedron, 1992, 48, 5265-5272.	1.9	23

#	Article	IF	CITATIONS
73	Total Syntheses of Four Stereoisomers of 4α-Hydroxy-1β,7β-peroxy- 10βH-guaia-5-ene. Organic Letters, 2005, 7, 3291-3294.	4.6	23
74	Ring-opening aminolysis of sesquiterpene lactones: An easy entry to bioactive sesquiterpene derivatives. Synthesis of (+)-β-cyperone and (â^')-eudesma-3,5-diene from santonin. Tetrahedron, 1996, 52, 10507-10518.	1.9	22
75	Syntheses of (+)-Alismoxide and (+)-4-epi-Alismoxide. Journal of Organic Chemistry, 2006, 71, 7866-7869.	3.2	22
76	Tailoring the ligand structure to the reagent in the mandelamide-Ti(IV) catalyzed enantioselective addition of dimethyl- and diethylzinc to aldehydes. Journal of Molecular Catalysis A, 2007, 276, 235-243.	4.8	22
77	Organocatalytic Enantioselective Synthesis of α-Hydroxyketones through a Friedel–Crafts Reaction of Naphthols and Activated Phenols with Aryl- and Alkylglyoxal Hydrates. Organic Letters, 2016, 18, 5652-5655.	4.6	22
78	Enantioselective Synthesis of Functionalized Diazaspirocycles from 4â€Benzylideneisoxazolâ€5(4 <i>H</i>)â€one Derivatives and Isocyanoacetate Esters. Advanced Synthesis and Catalysis, 2020, 362, 3564-3569.	4.3	22
79	Synthesis of the reported structure of herbolide I and its C-11 epimer from artemisin. Journal of Organic Chemistry, 1993, 58, 7204-7208.	3.2	21
80	Diastereoselective Michael addition of (S)-mandelic acid enolate to nitroalkenes. Enantioselective synthesis of α-hydroxy-α,β-diaryl-γ-lactams. Tetrahedron, 2004, 60, 165-170.	1.9	21
81	Enantioselective synthesis of 2-substituted-1,4-diketones from (S)-mandelic acid enolate and α,β-enones. Tetrahedron, 2006, 62, 9174-9182.	1.9	21
82	Enantioselective addition of terminal alkynes to N-(diphenylphosphinoyl)imines catalyzed by Zn–BINOL complexes. Tetrahedron, 2012, 68, 2128-2134.	1.9	21
83	Enantioselective Synthesis of 2-Amino-1,1-diarylalkanes Bearing a Carbocyclic Ring Substituted Indole through Asymmetric Catalytic Reaction of Hydroxyindoles with Nitroalkenes. Journal of Organic Chemistry, 2018, 83, 6397-6407.	3.2	21
84	Organocatalytic enantioselective functionalization of indoles in the carbocyclic ring with cyclic imines. New Journal of Chemistry, 2019, 43, 130-134.	2.8	21
85	Nucleophilic benzoylation using lithiated methyl mandelate as a synthetic equivalent of the benzoyl carbanion. Oxidative decarboxylation of α-hydroxyacids. Tetrahedron, 2001, 57, 1075-1081.	1.9	20
86	Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis. Chemical Communications, 2018, 54, 2862-2865.	4.1	20
87	Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. Synthesis, 2021, 53, 215-237.	2.3	20
88	Asymmetric Oxidative Mannich Reactions. Advanced Synthesis and Catalysis, 2021, 363, 602-628.	4.3	20
89	Copper(II)â^Bis(oxazoline) Catalyzed Asymmetric Dielsâ^Alder Reaction with α′-Arylsulfonyl Enones as Dienophiles. Journal of Organic Chemistry, 2008, 73, 6389-6392.	3.2	18
90	A non-catalyzed ring-opening aminolysis reaction of sesquiterpene lactones. Tetrahedron Letters, 1994, 35, 931-934.	1.4	17

#	Article	IF	CITATIONS
91	Topological control in the hydrogen bond-directed self-assembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters. CrystEngComm, 2010, 12, 2473.	2.6	17
92	Catalytic Enantioselective Conjugate Alkynylation of α,βâ€Unsaturated 1,1,1â€Trifluoromethyl Ketones with Terminal Alkynes. Chemistry - A European Journal, 2016, 22, 10057-10064.	3.3	17
93	Catalytic Diastereo- and Enantioselective Synthesis of 2-Imidazolinones. Organic Letters, 2019, 21, 4063-4066.	4.6	17
94	A Short Synthesis of (+)-Colartin and (+)-Arbusculin A from (-)-Santonin. Journal of Natural Products, 1993, 56, 1723-1727.	3.0	16
95	Stereoselective Synthesis of (+)-11βH,13-Dihydroestafiatin, (+)-11βH,13-Dihydroludartin, (Ⱂ)-Compressanolide, and (Ⱂ)-11βH,13-Dihydromicheliolide from Santonin. Journal of Natural Products, 2002, 65, 1703-1706.	3.0	16
96	Highly diastereoselective Michael reaction of (S)-mandelic acid enolate. Chiral benzoyl carbanion equivalent through an oxidative decarboxylation of α-hydroxyacids. Tetrahedron Letters, 2002, 43, 8463-8466.	1.4	16
97	Silicon guided rearrangement of epoxydecalines to spirocyclic compounds. Synthesis of gleenol and axenol from carvone. Tetrahedron, 2005, 61, 10853-10860.	1.9	16
98	Diastereoselective Michael addition of (S)-mandelic acid enolate to 2-arylidene-1,3-diketones: enantioselective diversity-oriented synthesis of densely substituted pyrazoles. Tetrahedron, 2006, 62, 8069-8076.	1.9	16
99	Efficient Synthesis of 5 halcogenylâ€1,3â€oxazinâ€2â€ones by Chalcogenâ€Mediated Yne–Carbamate Cyc An Experimental and Theoretical Study. European Journal of Organic Chemistry, 2015, 2015, 1020-1027.	lisation: 2.4	16
100	Synthesis of various natural 8,12-elemanolides from artemisin. Tetrahedron, 1989, 45, 5925-5934.	1.9	15
101	Regioselective intramolecular base-Induced synthesis of .alpha.,.betaUnsaturated. Acyldecalins from Decalones via Carbon Homologation with isocyanomethyl Tosylate (TosMIC). Synthesis of (.+)-6-Eudesmen-4.alphaol and (.+)-Vetiselinene. Journal of Organic Chemistry, 1995, 60, 2188-2194.	3.2	15
102	Synthesis of 3-Oxa-guaianolides from Santonin. Tetrahedron, 2000, 56, 6331-6338.	1.9	15
103	Organocatalytic Enantioselective Functionalization of Hydroxyquinolines through an Azaâ€Friedelâ€Crafts Alkylation with Isatinâ€derived Ketimines. Advanced Synthesis and Catalysis, 2018, 360, 859-864.	4.3	15
104	9,10-Phenanthrenedione as Visible-Light Photoredox Catalyst: A Green Methodology for the Functionalization of 3,4-Dihydro-1,4-Benzoxazin-2-Ones through a Friedel-Crafts Reaction. Catalysts, 2018, 8, 653.	3.5	15
105	Conjugate Alkynylation of Electrophilic Double Bonds. From Regioselectivity to Enantioselectivity. Synthesis, 2018, 50, 3281-3306.	2.3	15
106	Organocatalytic Enantioselective Strecker Reaction with Sevenâ€Membered Cyclic Imines. Advanced Synthesis and Catalysis, 2018, 360, 3662-3666.	4.3	15
107	Photocatalytic Giese Addition of 1,4-Dihydroquinoxalin-2-ones to Electron-Poor Alkenes Using Visible Light. Organic Letters, 2020, 22, 8012-8017.	4.6	15
108	A Selective Hydrolysis of Aryl Acetates. Synthesis, 1989, 1989, 438-439.	2.3	14

#	Article	IF	CITATIONS
109	Ultrasound assisted reductive cleavage of sesquiterpene Î ³ -enonelactones. Tetrahedron Letters, 1995, 36, 8469-8472.	1.4	14
110	Elimination of vic-Disulfonates Using Sodium Hydrogen Telluride in Dimethylformamide. Synlett, 1996, 1996, 655-656.	1.8	14
111	Oxidation of N-Acyl-pyrrolidones to Imides with CrO3·3,5-dimethylpyrazole. Tetrahedron Letters, 1997, 38, 8257-8260.	1.4	14
112	Indirect regioselective heteroarylation of indoles through a Friedel–Crafts reaction with (E)-1,4-diaryl-2-buten-1,4-diones. Tetrahedron, 2009, 65, 9264-9270.	1.9	13
113	NMR Spectroscopic Characterization and DFT Calculations of Zirconium(IV)-3,3′-Br ₂ –BINOLate and Related Complexes Used in an Enantioselective Friedel–Crafts Alkylation of Indoles with α,β-Unsaturated Ketones. Journal of Organic Chemistry, 2012, 77. 10545-10556.	3.2	13
114	Copper-catalysed enantioselective Michael addition of malonic esters to β-trifluoromethyl-α,β-unsaturated imines. Organic and Biomolecular Chemistry, 2017, 15, 3849-3853.	2.8	13
115	Asymmetric Organocatalytic Synthesis of <i>aza</i> â€Spirocyclic Compounds from Isothiocyanates and Isocyanides. European Journal of Organic Chemistry, 2021, 2021, 2268-2284.	2.4	13
116	Synthesis of Elemane Bis-Lactones from Santonin – Synthesis of the Reported Structure ofseco-Isoerivanin Pseudo Acid and Formal Synthesis of (+)-8-Deoxyvernolepin. European Journal of Organic Chemistry, 2000, 2000, 2145-2151.	2.4	12
117	The Synthesis of Bioactive Sesquiterpenes from Santonin. Studies in Natural Products Chemistry, 2000, , 53-129.	1.8	12
118	Novel 2-pyrone synthesis via Michael addition of mandelic acid enolate to trans-1,2-diaroylethenes. Tetrahedron Letters, 2004, 45, 8583-8586.	1.4	12
119	A Bioinspired Approach to Tri-nor-guaianes. Synthesis of (â^')-Clavukerin A. Journal of Natural Products, 2006, 69, 1234-1236.	3.0	12
120	Enantioselective copperâ€aminopyridineâ€catalyzed azaâ€Henry reaction with chelating <i>N</i> â€(2â€pyridyl)sulfonyl imines. Chirality, 2012, 24, 441-450.	2.6	12
121	Leaving Group and Regioselectivity Switches in the Aminoalkylation Reaction of Indoles and Related Heterocycles with αâ€Amido Sulfones. European Journal of Organic Chemistry, 2013, 2013, 3885-3895.	2.4	12
122	Catalytic Asymmetric Formal [3+2] Cycloaddition of 2â€lsocyanatomalonate Esters and Unsaturated Imines: Synthesis of Highly Substituted Chiral γâ€Lactams. Chemistry - A European Journal, 2017, 23, 14707-14711.	3.3	12
123	Synthesis of torrentin, dihydrosantamarine, and saussurea lactone from santonin. Canadian Journal of Chemistry, 1992, 70, 817-822.	1.1	11
124	Regio―and Stereoselective Synthesis of 3â€Pyrazolylideneâ€2â€oxindole Compounds by Nucleophilic Vinylic Substitution of (<i>E</i>)â€3â€(Nitromethylene)indolinâ€2â€one. Advanced Synthesis and Catalysis, 2019, 361, 1902-1907.	4.3	11
125	Copper-Catalyzed Aerobic Oxidative Alkynylation of 3,4-Dihydroquinoxalin-2-ones. Synthesis, 2020, 52, 544-552.	2.3	11
126	Organocatalytic Enantioselective Aminoalkylation of 5â€Aminopyrazole Derivatives with Cyclic Imines. European Journal of Organic Chemistry, 2020, 2020, 7450-7454.	2.4	11

#	Article	IF	CITATIONS
127	Synthesis of 9-oxyfunctionalized eudesmanes from artemisin. Tetrahedron, 1995, 51, 5609-5616.	1.9	10
128	Reductive Cleavage of 2,2,2-Trichloroethyl Esters with Sodium Telluride. Synthetic Communications, 1998, 28, 1405-1414.	2.1	10
129	Catalytic Aerobic Oxidative Cleavage of Oximes, Tosylhydrazones and N,N-Dimethylhydrazones to Carbonyl Compounds. Synthesis, 2000, 2000, 403-406.	2.3	10
130	Synthesis of all 7αH-guaia-4,11-dien-3-one diastereomers from (+)-dihydrocarvone. Tetrahedron, 2005, 61, 11156-11162.	1.9	10
131	Enantioselective Friedel–Crafts Alkylation of Indoles with (<i>E</i>)â€lâ€Arylâ€4â€benzyloxybutâ€2â€enâ€lâ€ Catalyzed by an (<i>R</i>)â€3,3′â€Br ₂ BINOLate–Hafnium(IV) Complex. European Journal of Organic Chemistry, 2013, 2013, 1902-1907.	€ones 2.4	10
132	Organocatalytic enantioselective aminoalkylation of pyrazol-3-ones with aldimines generated <i>in situ</i> from α-amido sulfones. Organic and Biomolecular Chemistry, 2019, 17, 9859-9863.	2.8	10
133	Synthesis and application of new iminopyridine ligands in the enantioselective palladium-catalyzed allylic alkylation. Journal of Molecular Catalysis A, 2014, 385, 73-77.	4.8	9
134	E,Z-Stereodivergent synthesis of N-tosyl α,β-dehydroamino esters via a Mukaiyama–Michael addition. RSC Advances, 2016, 6, 15655-15659.	3.6	9
135	Regioâ€; Diastereoâ€; and Enantioselective Organocatalytic Addition of 4â€6ubstituted Pyrazolones to Isatinâ€Derived Nitroalkenes. European Journal of Organic Chemistry, 2019, 2019, 3040-3044.	2.4	9
136	Enantioselective synthesis of unsymmetrical benzoins from (S)-mandelic acid enolate and aromatic aldehydes. Tetrahedron Letters, 2004, 45, 8039-8042.	1.4	8
137	(S)-Mandelic acid enolate as a chiral benzoyl anion equivalent for the enantioselective synthesis of non-symmetrically substituted benzoins. Tetrahedron, 2011, 67, 881-890.	1.9	8
138	Catalytic Diastereo- and Enantioselective Vinylogous Mannich Reaction of Alkylidenepyrazolones to Isatin-Derived Ketimines. Organic Letters, 2021, 23, 7391-7395.	4.6	8
139	Silicon-guided rearrangement of 10-methyl-4,5-epoxydecalins. Methyl versus methylene migration. Tetrahedron Letters, 2003, 44, 8117-8119.	1.4	7
140	Enantioselective Synthesis of Substituted Indoles Through Zirconium(IV)-Catalyzed Friedel–Crafts Alkylation. Synthesis, 2012, 44, 3590-3594.	2.3	7
141	Metal-Free Diastereo- and Enantioselective Dearomative Formal [3 + 2] Cycloaddition of 2-Nitrobenzofurans and Isocyanoacetate Esters. Organic Letters, 2022, 24, 2149-2154.	4.6	7
142	Radical Addition of Dihydroquinoxalin-2-ones to Trifluoromethyl Ketones under Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2022, 87, 9343-9356.	3.2	7
143	Functionality transfer from C8 to C9 in sesquiterpenes. Synthesis of the named Herbolide E from artemisin Tetrahedron Letters, 1992, 33, 5253-5256.	1.4	6
144	Asymmetric diastereodivergent Michael addition of 2-chloromalonate esters to conjugated imines enabled by catalyst metal change. Organic Chemistry Frontiers, 2019, 6, 2907-2915.	4.5	6

#	Article	IF	CITATIONS
145	Visible-light-accelerated amination of quinoxalin-2-ones and benzo[1,4]oxazin-2-ones with dialkyl azodicarboxylates under metal and photocatalyst-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 6250-6255.	2.8	6
146	Selective Reduction of α,β-Unsaturated Nitriles with Sodium Hydrogen Telluride. Synlett, 1995, 1995, 1189-1190.	1.8	5
147	Exo-Selective Asymmetric Inverse-Electron Demand Hetero-Diels-Alder Reaction Catalyzed by Cu(II)-Hydroxy Oxazoline Ligands. Synlett, 2011, 2011, 1592-1596.	1.8	5
148	Cobalt(III) Complex Catalyzed Aerobic Oxidation of Propargylic Alcohols. Synthesis, 2007, 2007, 3329-3332.	2.3	4
149	Catalytic Asymmetric Friedel–Crafts Alkylations in Total Synthesis. , 0, , 223-270.		4
150	Three-Component Synthesis of α-Aminoperoxides Using Primary and Secondary Dialkylzinc Reagents with O ₂ and α-Amido Sulfones. Organic Letters, 2020, 22, 5380-5384.	4.6	4
151	Nitroenynes as Electrophiles in Organocatalysis and their Application in the Synthesis of Chiral Heterocycles. European Journal of Organic Chemistry, 2021, 2021, 2255-2267.	2.4	4
152	Enantioselective Addition of Sodium Bisulfite to Nitroalkenes. A Convenient Approach to Chiral Sulfonic Acids. European Journal of Organic Chemistry, 2021, 2021, 5284-5287.	2.4	4
153	Catalytic Diastereo- and Enantioselective Synthesis of Tertiary Trifluoromethyl Carbinols through a Vinylogous Aldol Reaction of Alkylidenepyrazolones with Trifluoromethyl Ketones. Journal of Organic Chemistry, 2022, 87, 4538-4549.	3.2	4
154	Synthesis of elemane bis-lactones structurally related to vernolepin. Tetrahedron Letters, 1998, 39, 3079-3082.	1.4	3
155	Nucleophilic Benzoylation Using a Mandelic Acid Dioxolanone as a Synthetic Equivalent of the Benzoyl Carbanion. Oxidative Decarboxylation of α-Hydroxyacids. Molecules, 2004, 9, 365-372.	3.8	3
156	Catalytic Enantioselective Addition of Me2Zn to Isatins. Catalysts, 2017, 7, 387.	3.5	3
157	Lanthanum-pyBOX complexes as catalysts for the enantioselective conjugate addition of malonate esters to β,γ-unsaturated α-ketimino esters. Journal of Coordination Chemistry, 2018, 71, 864-873.	2.2	3
158	New Chiral Hydroxyoxazolines Based on Ketopinic Acid and Their Use in the Asymmetric Diels-Alder Reaction. Synlett, 2007, 2007, 2659-2662.	1.8	2
159	Enantioselective Addition of Dimethylzinc to α-Keto Esters. Synthesis, 2007, 2007, 3754-3757.	2.3	2
160	Mg/BOX complexes as efficient catalysts for the enantioselective Michael addition of malonates to β-trifluoromethyl-α,β-unsaturated ketones and their N-tosyl imines. Tetrahedron, 2021, 80, 131897.	1.9	2
161	Squaramide-Catalyzed Enantioselective Michael Addition of Pyrazol-3- ones to ortho-Quinone Methides. Letters in Organic Chemistry, 2020, 17, 837-844.	0.5	2
162	Synthesis of Sesquiterpenes via Silicon-Guided Rearrangement of Epoxydecalins. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	1

#	Article	IF	CITATIONS
163	Enantioselective Friedel–Crafts reaction of hydroxyarenes with nitroenynes to access chiral heterocycles <i>via</i> sequential catalysis. Organic and Biomolecular Chemistry, 2021, 19, 6990-6994.	2.8	1
164	Catalytic Enantioselective Cyclopropylalkynylation of Aldimines Generated In Situ from α-Amido Sulfones. Molecules, 2022, 27, 3763.	3.8	1
165	Highly Diastereoselective Michael Reaction of (S)-Mandelic Acid Enolate. Chiral Benzoyl Carbanion Equivalent Through an Oxidative Decarboxylation of α-Hydroxyacids ChemInform, 2003, 34, no.	0.0	0
166	Catalytic Aerobic Oxidative Decarboxylation of α-Trifluoromethyl-α-hydroxy Acids to Trifluoromethyl Ketones ChemInform, 2003, 34, no.	0.0	0
167	Mandelic Acid as Synthetic Equivalent of Benzoyl Carbanion. Synthesis of Nitrobenzophenones. Synlett, 2003, 2003, 2325-2328.	1.8	0
168	Diastereoselective Michael Addition of (S)-Mandelic Acid Enolate to Nitroalkenes. Enantioselective Synthesis of α-Hydroxy-α,β-diaryl-γ-lactams ChemInform, 2004, 35, no.	0.0	0
169	Highly Diastereoselective Arylation of (S)-Mandelic Acid Enolate: Enantioselective Synthesis of Substituted (R)-3-Hydroxy-3-phenyloxindoles and (R)-Benzylic Acids and Synthesis of Nitrobenzophenones ChemInform, 2005, 36, no.	0.0	0
170	Enantioselective Synthesis of Unsymmetrical Benzoins from (S)-Mandelic Acid Enolate and Aromatic Aldehydes ChemInform, 2005, 36, no.	0.0	0
171	Novel 2-Pyrone Synthesis via Michael Addition of Mandelic Acid Enolate to trans-1,2-Diaroylethenes ChemInform, 2005, 36, no.	0.0	0
172	Chiral Bis(amino alcohol)oxalamides as Ligands for Asymmetric Catalysis. Ti(IV) Catalyzed Enantioselective Addition of Diethylzinc to Aldehydes ChemInform, 2005, 36, no.	0.0	0
173	Enantioselective Addition of Dimethylzinc to Aldehydes Catalyzed by N-Substituted Mandelamide-Ti(IV) Complexes ChemInform, 2005, 36, no.	0.0	0
174	Enantioselective Synthesis of (S)-3-Hydroxy-3-phenyl-3,4-dihydroquinolin-2(1H)-one Ring System. Synthesis, 2007, 2007, 108-112.	2.3	0
175	Enantioselective zinc-mediated conjugate alkynylation of saccharin-derived 1- <i>aza</i> -butadienes. Chemical Communications, 2020, 56, 9461-9464.	4.1	0
176	Photochemical Rearrangements of 6/6- and 6/5-Fused Cross-Conjugated Cyclohexadienones. , 2003, , .		0