Arnaud Lanoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5926074/publications.pdf

Version: 2024-02-01

75

all docs

73 2,589 26
papers citations h-index

75

docs citations

h-index g-index

75 3206
times ranked citing authors

206112

48

#	Article	IF	CITATIONS
1	Impact of Deficit Irrigation on Grapevine cv. â€Touriga Nacional' during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach. Plants, 2022, 11, 732.	3.5	6
2	Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules, 2022, 27, 4029.	3.8	6
3	Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano. Plants, 2022, 11, 1648.	3.5	1
4	Cassia sieberiana root bark used in traditional medicine in Togo: Anthelmintic property against Haemonchus contortus and tannins composition. South African Journal of Botany, 2022, 151, 549-558.	2.5	3
5	Exploiting Spermidine <i>N</i> -Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast. ACS Synthetic Biology, 2021, 10, 286-296.	3.8	6
6	Postharvest Treatment of Wood Biomass from a Large Collection of European Grape Varieties: Impact on the Selection of Polyphenol-Rich Byproducts. ACS Sustainable Chemistry and Engineering, 2021, 9, 3509-3517.	6.7	6
7	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	3.8	10
8	Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans. Molecules, 2021, 26, 4511.	3.8	6
9	Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microbial Biotechnology, 2021, 14, 2693-2699.	4.2	24
10	Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content. Frontiers in Plant Science, 2021, 12, 742887.	3.6	7
11	Calcium and methyl jasmonate cross-talk in the secondary metabolism of grape cells. Plant Physiology and Biochemistry, 2021, 165, 228-238.	5.8	14
12	Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	10
13	Faba bean root exudates alter pea root colonization by the oomycete Aphanomyces euteiches at early stages of infection. Plant Science, 2021, 312, 111032.	3.6	6
14	Alternative splicing creates a pseudo-strictosidine \hat{l}^2 - <scp>d</scp> -glucosidase modulating alkaloid synthesis in <i>Catharanthus roseus</i> . Plant Physiology, 2021, 185, 836-856.	4.8	19
15	Tonoplast and Peroxisome Targeting of \hat{l}^3 -tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. Plant and Cell Physiology, 2021, , .	3.1	O
16	Exogenous calcium deflects grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chemistry, 2020, 313, 126123.	8.2	27
17	Identifying Genes Involved in Alkaloid Biosynthesis in Vinca minor through Transcriptomics and Gene Co-Expression Analysis. Biomolecules, 2020, 10, 1595.	4.0	12
18	Semi-Targeted Metabolomics to Validate Biomarkers of Grape Downy Mildew Infection Under Field Conditions. Plants, 2020, 9, 1008.	3.5	17

#	Article	IF	Citations
19	UPLC-HRMS Analysis Revealed the Differential Accumulation of Antioxidant and Anti-Aging Lignans and Neolignans in In Vitro Cultures of Linum usitatissimum L. Frontiers in Plant Science, 2020, 11, 508658.	3.6	10
20	Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules, 2020, 25, 2203.	3.8	27
21	Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochemistry and Molecular Biology, 2020, 124, 103403.	2.7	15
22	Cellular and Subcellular Compartmentation of the 2C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. Plants, 2020, 9, 462.	3 . 5	19
23	A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. Methods in Molecular Biology, 2020, 2172, 93-110.	0.9	1
24	Stilbenoid-Enriched Grape Cane Extracts for the Biocontrol of Grapevine Diseases. Progress in Biological Control, 2020, , 215-239.	0.5	6
25	Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry, 2019, 157, 135-144.	2.9	10
26	Vineyard evaluation of stilbenoidâ€rich grape cane extracts against downy mildew: a largeâ€scale study. Pest Management Science, 2019, 75, 1252-1257.	3.4	25
27	A <scp>BAHD</scp> acyltransferase catalyzing 19â€ <i>O</i> â€ecetylation of tabersonine derivatives in roots of <i>Catharanthus roseus</i> enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	5.7	46
28	A standardized toolkit for genetic engineering of CTG clade yeasts. Journal of Microbiological Methods, 2018, 144, 152-156.	1.6	19
29	Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 2018, 240, 1022-1027.	8.2	40
30	A BAHD neofunctionalization promotes tetrahydroxycinnamoyl spermine accumulation in the pollen coats of the Asteraceae family. Journal of Experimental Botany, 2018, 69, 5355-5371.	4.8	12
31	Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology, 2018, 177, 1473-1486.	4.8	34
32	Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Frontiers in Plant Science, 2018, 9, 798.	3.6	41
33	Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods in Molecular Biology, 2018, 1789, 33-54.	0.9	4
34	Virus-induced gene silencing in Rauwolfia species. Protoplasma, 2017, 254, 1813-1818.	2.1	15
35	Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports, 2017, 7, 44641.	3.3	309
36	Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (MalusÂ×Âdomestica) Tj ETC 45-60.	Qq0 0 0 rgl 3 . 2	BT /Overlock 1 15

45-60.

#	Article	IF	CITATIONS
37	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	3.3	39
38	A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 2017, 8, 316.	12.8	117
39	CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. Frontiers in Plant Science, 2017, 8, 1614.	3.6	27
40	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	4.8	44
41	An additionalMeyerozyma guilliermondii lMH3gene confers mycophenolic acid resistance in fungal CTG clade species. FEMS Yeast Research, 2016, 16, fow078.	2.3	5
42	Prequels to Synthetic Biology. Methods in Enzymology, 2016, 576, 167-206.	1.0	13
43	Virusâ€induced gene silencing in <i>Catharanthus roseus</i> by biolistic inoculation of tobacco rattle virus vectors. Plant Biology, 2015, 17, 1242-1246.	3.8	16
44	Biosynthetic Origin of <i>E</i> -Resveratrol Accumulation in Grape Canes during Postharvest Storage. Journal of Agricultural and Food Chemistry, 2015, 63, 1631-1638.	5.2	59
45	Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks. Phytochemistry, 2015, 116, 94-103.	2.9	17
46	Composition and Tissue-Specific Distribution of Stilbenoids in Grape Canes Are Affected by Downy Mildew Pressure in the Vineyard. Journal of Agricultural and Food Chemistry, 2015, 63, 8472-8477.	5.2	26
47	Characterization of a spermidine hydroxycinnamoyltransferase in <i>Malus domestica</i> highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. Journal of Experimental Botany, 2015, 66, 7271-7285.	4.8	62
48	Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics, 2015, 16, 619.	2.8	54
49	Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry, 2015, 113, 9-23.	2.9	92
50	Illuminating Fungal Infections with Bioluminescence. PLoS Pathogens, 2014, 10, e1004179.	4.7	19
51	Optimized genetic transformation of <i>Zanthoxylum zanthoxyloides</i> by <i>Agrobacterium rhizogenes</i> and the production of chelerythrine and skimmiamine in hairy root cultures. Engineering in Life Sciences, 2014, 14, 95-99.	3.6	9
52	ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. Journal of Plant Physiology, 2014, 171, 1510-1513.	3.5	14
53	Disrupting the methionine biosynthetic pathway in <i>Candida guilliermondii</i> : characterization of the <i>MET2</i> gene as counterâ€selectable marker. Yeast, 2014, 31, 243-251.	1.7	7
54	Antifungal Activity of Resveratrol Derivatives against <i>Candida</i> Species. Journal of Natural Products, 2014, 77, 1658-1662.	3.0	67

#	Article	IF	CITATIONS
55	A new series of vectors for constitutive, inducible or repressible gene expression in Candida guilliermondii. Journal of Biotechnology, 2014, 180, 37-42.	3.8	10
56	Deciphering the Evolution, Cell Biology and Regulation of Monoterpene Indole Alkaloids. Advances in Botanical Research, 2013, 68, 73-109.	1.1	22
57	Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 2013, 59, 73-90.	1.7	61
58	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i> /i>Â Â Â. Plant Physiology, 2013, 163, 1792-1803.	4.8	97
59	Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Molecular Biology Reports, 2012, 39, 5433-5447.	2.3	17
60	Norlittorine and norhyoscyamine identified as products of littorine and hyoscyamine metabolism by 13C-labeling in Datura innoxia hairy roots. Phytochemistry, 2012, 74, 105-114.	2.9	12
61	Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Molecular Biology Reports, 2012, 39, 3235-3243.	2.3	34
62	In vitropropagation of Zanthoxylum zanthoxyloides Lam., an endangered African medicinal plant. Acta Botanica Gallica, 2011, 158, 47-55.	0.9	8
63	The subcellular organization of strictosidine biosynthesis in ⟨i⟩Catharanthusâ€froseus⟨li⟩ epidermis highlights several transâ€tonoplast translocations of intermediate metabolites. FEBS Journal, 2011, 278, 749-763.	4.7	58
64	Pseudomonas fluorescens CHAO maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions. Journal of Experimental Botany, 2011, 62, 4337-4344.	4.8	42
65	Plants Respond to Pathogen Infection by Enhancing the Antifungal Gene Expression of Root-Associated Bacteria. Molecular Plant-Microbe Interactions, 2011, 24, 352-358.	2.6	109
66	Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Annals of Botany, 2011, 108, 459-469.	2.9	69
67	Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?. BMC Plant Biology, 2010, 10, 182.	3.6	129
68	<i>De novo</i> biosynthesis of defense root exudates in response to <i>Fusarium</i> attack in barley. New Phytologist, 2010, 185, 577-588.	7.3	206
69	Induced root-secreted phenolic compounds as a belowground plant defense. Plant Signaling and Behavior, 2010, 5, 1037-1038.	2.4	40
70	Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Reports, 2009, 28, 1215-1234.	5.6	105
71	Plant defence against nematodes is not mediated by changes in the soil microbial community. Functional Ecology, 2009, 23, 488-495.	3.6	19
72	Occurrence of circadian rhythms in hairy root cultures grown under controlled conditions. Biotechnology and Bioengineering, 2004, 88, 722-729.	3.3	14

ARNAUD LANOUE

#	Article	IF	CITATIONS
73	Kinetic Study of Littorine Rearrangement inDaturainnoxiaHairy Roots by13C NMR Spectroscopy. Journal of Natural Products, 2002, 65, 1131-1135.	3.0	22