
Ye Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925532/publications.pdf Version: 2024-02-01

ΥΕ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015, 115, 5159-5223.	47.7	703
2	Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Advanced Materials, 2013, 25, 5965-5970.	21.0	441
3	Energy harvesting and storage in 1D devices. Nature Reviews Materials, 2017, 2, .	48.7	421
4	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	34.4	390
5	Flexible and Stretchable Lithiumâ€lon Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs. Angewandte Chemie - International Edition, 2014, 53, 14564-14568.	13.8	334
6	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	21.0	318
7	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	21.0	314
8	Electrochromic Fiberâ \in Shaped Supercapacitors. Advanced Materials, 2014, 26, 8126-8132.	21.0	306
9	Elastic and Wearable Wireâ€Shaped Lithiumâ€lon Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	13.8	306
10	Flexible, Stretchable, and Rechargeable Fiber‣haped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	13.8	291
11	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	27.8	270
12	Winding Aligned Carbon Nanotube Composite Yarns into Coaxial Fiber Full Batteries with High Performances. Nano Letters, 2014, 14, 3432-3438.	9.1	224
13	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018, 6, 12932-12944.	10.3	218
14	Weaving Sensing Fibers into Electrochemical Fabric for Realâ€Time Health Monitoring. Advanced Functional Materials, 2018, 28, 1804456.	14.9	216
15	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982.	13.8	211
16	Advances in Wearable Fiber‣haped Lithiumâ€ŀon Batteries. Advanced Materials, 2016, 28, 4524-4531.	21.0	201
17	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2016, 55, 14384-14388.	13.8	191
18	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie - International Edition, 2016, 55, 4487-4491.	13.8	189

Ye Zhang

#	Article	IF	CITATIONS
19	A Gumâ€Like Lithiumâ€lon Battery Based on a Novel Arched Structure. Advanced Materials, 2015, 27, 1363-1369.	21.0	185
20	Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process. Advanced Materials, 2015, 27, 7854-7860.	21.0	176
21	Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A, 2014, 2, 11054.	10.3	167
22	The pâ€Orbital Delocalization of Mainâ€Group Metals to Boost CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2018, 57, 16114-16119.	13.8	159
23	A Shapeâ€Memory Supercapacitor Fiber. Angewandte Chemie - International Edition, 2015, 54, 15419-15423.	13.8	141
24	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. Journal of Physical Chemistry C, 2016, 120, 9685-9691.	3.1	140
25	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	10.3	132
26	Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000077.	14.9	115
27	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Zn″on Batteries. Advanced Functional Materials, 2021, 31, 2107652.	14.9	115
28	A Li–Air Battery with Ultralong Cycle Life in Ambient Air. Advanced Materials, 2018, 30, 1704378.	21.0	113
29	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	13.8	111
30	Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon, 2017, 125, 595-604.	10.3	108
31	Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557.	10.3	103
32	The Recent Advance in Fiberâ€ S haped Energy Storage Devices. Advanced Electronic Materials, 2019, 5, 1800456.	5.1	103
33	Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles. Advanced Energy Materials, 2014, 4, 1301750.	19.5	100
34	A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. Journal of Materials Chemistry C, 2017, 5, 7035-7042.	5.5	100
35	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	13.8	97
36	The Rise of Fiber Electronics. Angewandte Chemie - International Edition, 2019, 58, 13643-13653.	13.8	86

Ye Zhang

#	Article	IF	CITATIONS
37	Stretchable lithium-air batteries for wearable electronics. Journal of Materials Chemistry A, 2016, 4, 13419-13424.	10.3	82
38	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	14.9	74
39	An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. Angewandte Chemie, 2016, 128, 8111-8114.	2.0	70
40	Stable and Bright Pyridine Manganese Halides for Efficient White Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2011191.	14.9	70
41	Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets. Journal of Materials Chemistry C, 2015, 3, 5621-5624.	5.5	69
42	A Tissue‣ike Soft Allâ€Hydrogel Battery. Advanced Materials, 2022, 34, e2105120.	21.0	65
43	Carbon nanomaterials for flexible lithium ion batteries. Carbon, 2017, 124, 79-88.	10.3	64
44	An Ultraflexible Silicon–Oxygen Battery Fiber with High Energy Density. Angewandte Chemie - International Edition, 2017, 56, 13741-13746.	13.8	59
45	Highâ€Energyâ€Density Magnesiumâ€Air Battery Based on Dualâ€Layer Gel Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 15317-15322.	13.8	59
46	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	19.1	59
47	The pâ€Orbital Delocalization of Mainâ€Group Metals to Boost CO ₂ Electroreduction. Angewandte Chemie, 2018, 130, 16346-16351.	2.0	51
48	High‣fficiency and Stable Liâ^'CO ₂ Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
49	A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance. Journal of Materials Chemistry A, 2015, 3, 6286-6290.	10.3	47
50	A Lithium–Air Battery Stably Working at High Temperature with High Rate Performance. Small, 2018, 14, 1703454.	10.0	44
51	Integrating photovoltaic conversion and lithium ion storage into a flexible fiber. Journal of Materials Chemistry A, 2016, 4, 7601-7605.	10.3	42
52	Broadband Nonlinear Photonics in Few‣ayer Borophene. Small, 2021, 17, e2006891.	10.0	42
53	A self-healing and stretchable light-emitting device. Journal of Materials Chemistry C, 2018, 6, 12774-12780.	5.5	36
54	Elastic and wearable ring-type supercapacitors. Journal of Materials Chemistry A, 2016, 4, 3217-3222.	10.3	34

YE ZHANG

#	Article	IF	CITATIONS
55	Stretchable Energy Storage Devices Based on Carbon Materials. Small, 2021, 17, e2005015.	10.0	34
56	Hybrid Solar Absorber–Emitter by Coherenceâ€Enhanced Absorption for Improved Solar Thermophotovoltaic Conversion. Advanced Optical Materials, 2018, 6, 1800813.	7.3	33
57	Injectable fiber batteries for all-region power supply <i>in vivo</i> . Journal of Materials Chemistry A, 2021, 9, 1463-1470.	10.3	31
58	A Core–Sheath Sensing Yarnâ€BasedÂElectrochemical Fabric System for Powerful Sweat Capture and Stable Sensing. Advanced Functional Materials, 2022, 32, .	14.9	30
59	Sticky-note supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3355-3360.	10.3	28
60	Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. Nanoscale Horizons, 2020, 5, 847-856.	8.0	28
61	Failure mechanism in fiber-shaped electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10942-10948.	10.3	26
62	Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. Journal of Materials Chemistry A, 2015, 3, 19304-19309.	10.3	26
63	LaCO3OH microstructures with tunable morphologies: EDTA-assisted hydrothermal synthesis, formation mechanism and adsorption properties. RSC Advances, 2013, 3, 3907.	3.6	25
64	A Selfâ€Healing Aqueous Lithiumâ€Ion Battery. Angewandte Chemie, 2016, 128, 14596-14600.	2.0	25
65	Alignment of Thermally Conducting Nanotubes Making High-Performance Light-Driving Motors. ACS Applied Materials & Interfaces, 2018, 10, 26765-26771.	8.0	24
66	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie, 2016, 128, 4563-4567.	2.0	23
67	Injectable Fiber Electronics for Tumor Treatment. Advanced Fiber Materials, 2022, 4, 246-255.	16.1	21
68	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	2.0	18
69	Gradually Crosslinking Carbon Nanotube Array in Mimicking the Beak of Giant Squid for Compression ensing Supercapacitor. Advanced Functional Materials, 2020, 30, 1902971.	14.9	18
70	Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition. Advanced Materials, 2020, 32, e2000058.	21.0	16
71	Designing Porous Antifouling Interfaces for Highâ€Power Implantable Biofuel Cell. Advanced Functional Materials, 2021, 31, 2107160.	14.9	14
72	An Ultraflexible Silicon–Oxygen Battery Fiber with High Energy Density. Angewandte Chemie, 2017, 129, 13929-13934.	2.0	12

YE ZHANG

#	Article	IF	CITATIONS
73	The Rise of Fiber Electronics. Angewandte Chemie, 2019, 131, 13778-13788.	2.0	12
74	Highâ€Energyâ€Density Magnesiumâ€Air Battery Based on Dualâ€Layer Gel Electrolyte. Angewandte Chemie, 2021, 133, 15445-15450.	2.0	8
75	Lithium-plasmon-based low-powered dynamic color display. National Science Review, 2023, 10, .	9.5	8
76	Dual-function optoelectronic polymer device for photoelectric conversion and electroluminescence. Journal of Materials Chemistry C, 2016, 4, 1144-1148.	5.5	6
77	Highâ€Efficiency and Stable Li O2 Battery Enabled by Carbon Nanotube/Carbon Nitride Heterostructured Photocathode. Angewandte Chemie, 0, , .	2.0	6
78	Flexible Tellurium-Based Electrode for High-Performance Lithium-Tellurium Battery. Nanomaterials, 2021, 11, 2903.	4.1	4
79	Batteries for wearables. National Science Review, 2023, 10, .	9.5	4
80	High-performance fiber-shaped lithium-ion batteries. Pure and Applied Chemistry, 2020, 92, 767-772.	1.9	2
81	Rücktitelbild: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance (Angew. Chem. 30/2014). Angewandte Chemie, 2014, 126, 8092-8092.	2.0	1
82	Carbon Nanotubes for Flexible Fiber Batteries. Carbon Materials, 2022, , 1-22.	1.2	1