Ellen D Ketterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5925056/publications.pdf

Version: 2024-02-01

112 papers 6,487 citations

71061 41 h-index 78 g-index

150 all docs

150 docs citations

150 times ranked

4008 citing authors

#	Article	IF	CITATIONS
1	Experimentally elevated testosterone shortens telomeres across years in a freeâ€living songbird. Molecular Ecology, 2022, 31, 6216-6223.	2.0	6
2	The probability of being infected with haemosporidian parasites increases with host age but is not affected by experimental testosterone elevation in a wild songbird. Journal of Avian Biology, 2022, 2022, .	0.6	4
3	Rapid evolutionary divergence of a songbird population following recent colonization of an urban area. Molecular Ecology, 2022, 31, 2625-2643.	2.0	5
4	A high-quality genome assembly and annotation of the dark-eyed junco $\langle i \rangle$ Junco hyemalis $\langle i \rangle$, a recently diversified songbird. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	5
5	Plasticity in female timing may explain earlier breeding in a North American songbird. Journal of Animal Ecology, 2022, 91, 1988-1998.	1.3	4
6	Animal Migration: An Overview of One of Nature's Great Spectacles. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 479-497.	3.8	18
7	Seasonally sympatric songbirds that differ in migratory strategy also differ in neuroendocrine measures. General and Comparative Endocrinology, 2020, 285, 113250.	0.8	6
8	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
9	Artificial light at night amplifies seasonal relapse of haemosporidian parasites in a widespread songbird. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201831.	1.2	20
10	Reactivation of latent infections with migration shapes population-level disease dynamics. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201829.	1.2	16
11	Chasing the sun: When to migrate, when to breed. Functional Ecology, 2020, 34, 1750-1751.	1.7	0
12	Urban birdsongs: higher minimum song frequency of an urban colonist persists in a common garden experiment. Animal Behaviour, 2020, 170, 33-41.	0.8	14
13	What Do Ecology, Evolution, and Behavior Have in Common? The Organism in the Middle. American Naturalist, 2020, 196, 103-118.	1.0	2
14	Migrant and resident female songbirds differ in gonadal response to upstream stimulation during seasonal sympatry. General and Comparative Endocrinology, 2020, 293, 113469.	0.8	3
15	Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. Journal of Experimental Biology, 2019, 222, .	0.8	33
16	Migratory strategy explains differences in timing of female reproductive development in seasonally sympatric songbirds. Functional Ecology, 2019, 33, 1651-1662.	1.7	16
17	Densityâ€dependent fitness, not dispersal movements, drives temporal variation in spatial genetic structure in darkâ€eyed juncos (Junco hyemalis). Molecular Ecology, 2019, 28, 968-979.	2.0	2
18	Urban residency and leukocyte profiles in a traditionally migratory songbird. Animal Migration, 2019, 6, 49-59.	1.1	5

#	Article	IF	Citations
19	Changes in processes downstream of the hypothalamus are associated with seasonal follicle development in a songbird, the dark-eyed junco (Junco hyemalis). General and Comparative Endocrinology, 2019, 270, 103-112.	0.8	13
20	Earlyâ€breeding females experience greater telomere loss. Molecular Ecology, 2019, 28, 114-126.	2.0	19
21	Leukocyte profiles vary with breeding latitude and infection status in a seasonally sympatric songbird. Animal Migration, 2019, 6, 28-40.	1.1	11
22	Genomes to space stations: the need for the integrative study of migration for avian conservation. Biology Letters, $2018, 14, .$	1.0	10
23	Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 5-15.	0.7	25
24	Female darkâ€eyed juncos <i>Junco hyemalis thurberi</i> produce maleâ€like song in a territorial context during the early breeding season. Journal of Avian Biology, 2018, 49, jav-01566.	0.6	14
25	Male courtship preference during seasonal sympatry may maintain population divergence. Ecology and Evolution, 2018, 8, 11833-11841.	0.8	6
26	Differential gene regulation underlies variation in melanic plumage coloration in the darkâ€eyed junco (<i>Junco hyemalis</i>). Molecular Ecology, 2018, 27, 4501-4515.	2.0	41
27	Sedentary songbirds maintain higher prevalence of haemosporidian parasite infections than migratory conspecifics during seasonal sympatry. PLoS ONE, 2018, 13, e0201563.	1.1	24
28	The effect of chronic and acute stressors, and their interaction, on testes function: an experimental test during testicular recrudescence. Journal of Experimental Biology, 2018, 221, .	0.8	11
29	Lipid signaling and fat storage in the dark-eyed junco. General and Comparative Endocrinology, 2017, 247, 166-173.	0.8	3
30	Condition- and context-dependent factors are related to courtship behavior of paired and unpaired males in a socially monogamous songbird. Auk, 2017, 134, 575-586.	0.7	3
31	Condition explains individual variation in mobbing behavior. Ethology, 2017, 123, 495-502.	0.5	9
32	Mechanisms Associated with an Advance in the Timing of Seasonal Reproduction in an Urban Songbird. Frontiers in Ecology and Evolution, 2017, 5, .	1,1	17
33	Elaina Marie Tuttle, 1963–2016. Auk, 2017, 134, 778-779.	0.7	0
34	The Function of Behavior as Assessed by Phenotypic Engineering withÂTestosterone., 2017,, 305-320.		1
35	Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	45
36	Divergence along the gonadal steroidogenic pathway: Implications for hormone-mediated phenotypic evolution. Hormones and Behavior, 2016, 84, 1-8.	1.0	33

3

#	Article	IF	CITATIONS
37	Early spring sex differences in luteinizing hormone response to gonadotropin releasing hormone in co-occurring resident and migrant dark-eyed juncos (Junco hyemalis). General and Comparative Endocrinology, 2016, 236, 17-23.	0.8	24
38	A migratory lifestyle is associated with shorter telomeres in a songbird (<i>Junco hyemalis</i>). Auk, 2016, 133, 649-653.	0.7	18
39	Effect of acute stressor on reproductive behavior differs between urban and rural birds. Ecology and Evolution, 2016, 6, 6546-6555.	0.8	33
40	Reproductive Allochrony in Seasonally Sympatric Populations Maintained by Differential Response to Photoperiod: Implications for Population Divergence and Response to Climate Change. American Naturalist, 2016, 187, 436-446.	1.0	42
41	Gonads and the evolution of hormonal phenotypes. Integrative and Comparative Biology, 2016, 56, 225-234.	0.9	21
42	Hypothalamic–pituitary–adrenal axis activity is not elevated in a songbird (Junco hyemalis) preparing for migration. General and Comparative Endocrinology, 2016, 232, 60-66.	0.8	15
43	Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories. Biology Letters, 2016, 12, 20160069.	1.0	47
44	Seasonal timing and population divergence: when to breed, when to migrate. Current Opinion in Behavioral Sciences, 2015, 6, 50-58.	2.0	31
45	Testosterone and sex: the role of hormones in sexual dimorphism. FASEB Journal, 2015, 29, 562.18.	0.2	O
46	Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. Journal of Experimental Biology, 2014, 217, 507-17.	0.8	28
47	Male and female testosteroneis one sex made in the image of the other? A comment on Goymann and Wingfield. Behavioral Ecology, 2014, 25, 702-702.	1.0	6
48	Hormonal, Behavioral, and Life-History Traits Exhibit Correlated Shifts in Relation to Population Establishment in a Novel Environment. American Naturalist, 2014, 184, E147-E160.	1.0	73
49	Examining sources of variation in HPG axis function among individuals and populations of the dark-eyed junco. Hormones and Behavior, 2014, 65, 179-187.	1.0	46
50	Highly context-specific activation of the HPG axis in the dark-eyed junco and implications for the challenge hypothesis. General and Comparative Endocrinology, 2014, 201, 65-73.	0.8	17
51	Bird odour predicts reproductive success. Animal Behaviour, 2013, 86, 697-703.	0.8	61
52	Individual variation in testosterone and parental care in a female songbird; The dark-eyed junco (Junco) Tj ETQq0) 0 0 rgBT	/Overlock 10 1
53	Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird. General and Comparative Endocrinology, 2013, 194, 230-239.	0.8	23
54	Experimental elevation of testosterone lowers fitness in female dark-eyed juncos. Hormones and Behavior, 2013, 63, 782-790.	1.0	45

#	Article	IF	Citations
55	Testosterone production, sexually dimorphic morphology, and digit ratio in the dark-eyed junco. Behavioral Ecology, 2013, 24, 462-469.	1.0	12
56	Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict. PLoS ONE, 2013, 8, e61784.	1.1	52
57	VII.2. Evolution of Hormones and Behavior. , 2013, , 616-623.		0
58	Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research, 2013, 2, 115.	0.8	44
59	Robust behavioral effects of song playback in the absence of testosterone or corticosterone release. Hormones and Behavior, 2012, 62, 418-425.	1.0	23
60	De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system. BMC Genomics, 2012, 13, 305.	1.2	35
61	Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation. Behavioral Ecology, 2012, 23, 960-969.	1.0	285
62	Competitive females are successful females; phenotype, mechanism, and selection in a common songbird. Behavioral Ecology and Sociobiology, 2012, 66, 241-252.	0.6	97
63	Two Sides of the Same Coin? Consistency in Aggression to Conspecifics and Predators in a Female Songbird. Ethology, 2011, 117, 786-795.	0.5	33
64	Role of Testosterone in Stimulating Seasonal Changes in a Potential Avian Chemosignal. Journal of Chemical Ecology, 2011, 37, 1349-1357.	0.9	47
65	Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behavioral Ecology, 2011, 22, 1256-1263.	1.0	80
66	ANIMAL MIGRATION AS A MOVING TARGET FOR CONSERVATION: INTRA-SPECIES VARIATION AND RESPONSES TO ENVIRONMENTAL CHANGE, AS ILLUSTRATED IN A SOMETIMES MIGRATORY SONGBIRD. Environmental Law, 2011, 41, 289-316.	0.5	6
67	Mellowing with age: older parents are less responsive to a stressor in a longâ€lived seabird. Functional Ecology, 2010, 24, 1037-1044.	1.7	27
68	Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behavioral Ecology, 2010, 21, 608-614.	1.0	99
69	Natural Selection on Testosterone Production in a Wild Songbird Population. American Naturalist, 2010, 175, 687-701.	1.0	103
70	Phenotypic integration and independence: Hormones, performance, and response to environmental change. Integrative and Comparative Biology, 2009, 49, 365-379.	0.9	202
71	Song Frequency Does Not Reflect Differences in Body Size among Males in Two Oscine Species. Ethology, 2008, 114, 1084-1093.	0.5	44
72	Experimentally-elevated testosterone, female parental care, and reproductive success in a songbird, the Dark-eyed Junco (Junco hyemalis). Hormones and Behavior, 2008, 54, 571-578.	1.0	56

#	Article	IF	Citations
73	Hormone-mediated suites as adaptations and evolutionary constraints. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1611-1620.	1.8	204
74	Natural Variation in a Testosteroneâ€Mediated Tradeâ€Off between Mating Effort and Parental Effort. American Naturalist, 2007, 170, 864-875.	1.0	220
75	The Influence of Exogenous Testosterone on the Dynamics of Nestling Provisioning in Dark-Eyed Juncos. Ethology, 2007, 113, 18.	0.5	15
76	Testosterone response to GnRH in a female songbird varies with stage of reproduction: implications for adult behaviour and maternal effects. Functional Ecology, 2007, 21, 767-775.	1.7	79
77	Perspective: Masculinized dominant females in a cooperatively breeding species, a case of cross-sexual transfer?. Molecular Ecology, 2007, 16, 1345-1347.	2.0	2
78	Diet quality affects an attractive white plumage pattern in dark-eyed juncos (Junco hyemalis). Behavioral Ecology and Sociobiology, 2007, 61, 1391-1399.	0.6	79
79	Behavioral and physiological responses to experimentally elevated testosterone in female dark-eyed juncos (Junco hyemalis carolinensis). Hormones and Behavior, 2006, 50, 200-207.	1.0	112
80	Seasonal Variation in Volatile Compound Profiles of Preen Gland Secretions of the Dark-eyed Junco (Junco hyemalis). Journal of Chemical Ecology, 2006, 33, 183-198.	0.9	92
81	Seasonal and individual variation in response to GnRH challenge in male dark-eyed juncos (Junco) Tj ETQq $1\ 1\ 0.7$	84314 rgE	3T <u>/</u> Qyerlock
82	Diet quality affects egg size and number but does not reduce maternal antibody transmission in Japanese quail Coturnix japonica. Journal of Animal Ecology, 2005, 74, 1051-1058.	1.3	54
83	CORRELATIONAL SELECTION LEADS TO GENETIC INTEGRATION OF BODY SIZE AND AN ATTRACTIVE PLUMAGE TRAIT IN DARK-EYED JUNCOS. Evolution; International Journal of Organic Evolution, 2005, 59, 658.	1.1	6
84	BEHAVIOR: Hormones in the Middle. Science, 2005, 310, 1905-1906.	6.0	0
85	Correlational selection leads to genetic integration of body size and an attractive plumage trait in dark-eyed juncos. Evolution; International Journal of Organic Evolution, 2005, 59, 658-71.	1.1	37
86	Elevated testosterone reduces choosiness in female dark–eyed juncos (Junco hyemalis): evidence for a hormonal constraint on sexual selection?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1377-1384.	1.2	61
87	Female ornamentation and male mate choice in dark-eyed juncos. Animal Behaviour, 2004, 67, 93-102.	0.8	41
88	Consequences of elevating plasma testosterone in females of a socially monogamous songbird: evidence of constraints on male evolution?. Hormones and Behavior, 2004, 46, 171-178.	1.0	144
89	Mouth Color Signals Thermal State of Nestling Dark-Eyed Juncos (Junco hyemalis). Ethology, 2003, 109, 171-182.	0.5	14
90	Testosterone Manipulation of Male Attractiveness has no Detectable Effect on Female Home-Range Size and Behavior During the Fertile Period. Ethology, 2002, 108, 713-726.	0.5	13

#	Article	IF	CITATIONS
91	Steroid Hormones and Immune Function: Experimental Studies in Wild and Captive Darkâ€Eyed Juncos (Junco hyemalis). American Naturalist, 2001, 157, 408-420.	1.0	213
92	The Effects of Experimentally Elevated Testosterone and Food Deprivation on Food Consumption and Prey Size Preferences in Male Dark-Eyed Juncos (Junco hyemalis, Emberizidae: Passeriformes). Ethology, 2001, 107, 439-449.	0.5	3
93	Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2005-2010.	1.2	228
94	Adaptation, Exaptation, and Constraint: A Hormonal Perspective. American Naturalist, 1999, 154, S4-S25.	1.0	542
95	Exogenous Testosterone and the Adrenocortical Response in Dark-Eyed Juncos. Auk, 1999, 116, 64-72.	0.7	106
96	Influence of experimentally elevated testosterone on nest defence in dark-eyed juncos. Animal Behaviour, 1998, 56, 617-621.	0.8	47
97	Variation in Ejaculate Quality in Dark-Eyed Juncos According to Season, Stage of Reproduction, and Testosterone Treatment. Auk, 1998, 115, 684-693.	0.7	25
98	The Effect of Exogenous Testosterone on Parental Behavior, Plasma Prolactin, and Prolactin Binding Sites in Dark-Eyed Juncos. Hormones and Behavior, 1998, 34, 1-10.	1.0	107
99	Testosterone affects reproductive success by influencing extra–pair fertilizations in male dark–eyed juncos (Aves: Junco hyemalis). Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1599-1603.	1.2	166
100	Testosterone and mate choice in the dark-eyed junco. Animal Behaviour, 1997, 54, 1135-1146.	0.8	159
101	Effects of Experimentally Elevated Testosterone on Plasma Corticosterone and Corticosteroid-Binding Globulin in Dark-Eyed Juncos (Junco hyemalis). General and Comparative Endocrinology, 1997, 108, 141-151.	0.8	69
102	Song rates of dark-eyed juncos do not increase when females are fertile. Behavioral Ecology and Sociobiology, 1997, 41, 165-169.	0.6	12
103	Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. Ibis, 1996, 138, 70-86.	1.0	118
104	Effects of testosterone on spatial activity in free-ranging male dark-eyed juncos, Junco hyemalis. Animal Behaviour, 1994, 47, 1445-1455.	0.8	130
105	Testosterone and Avian Life Histories: Effects of Experimentally Elevated Testosterone on Prebasic Molt and Survival in Male Dark-Eyed Juncos. Condor, 1992, 94, 364-370.	0.7	121
106	Testosterone and Avian Life Histories: Effects of Experimentally Elevated Testosterone on Behavior and Correlates of Fitness in the Dark-Eyed Junco (Junco hyemalis). American Naturalist, 1992, 140, 980-999.	1.0	398
107	Experiments on Winterâ€site Attachment in Young Darkâ€eyed Juncos. Ethology, 1991, 87, 123-133.	0.5	7
108	Paternal influence on growth and survival of dark-eyed junco young: do parental males benefit?. Animal Behaviour, 1988, 36, 1601-1618.	0.8	136

#	ARTICLE	IF	CITATION
109	Can Experience Alter the Avian Annual Cycle? Results of Migration Experiments with Indigo Buntings. Ethology, 1988, 79, 333-341.	0.5	10
110	Suppression of Autumnal Migratory Unrest in Dark-Eyed Juncos Held During Summer on, Near, or Far From their Previous Wintering Sites. Auk, 1987, 104, 303-310.	0.7	8
111	Long-Distance Homing by Nonmigratory Dark-Eyed Juncos. Condor, 1986, 88, 539-542.	0.7	10
112	A Study of Fasting in Tree Sparrows (Spizella arborea) and Dark-Eyed Juncos (Junco hyemalis): Ecological Implications. Auk, 1982, 99, 299-308.	0.7	63