
David C Henshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592401/publications.pdf Version: 2024-02-01

<u> ΠλυίρÂC Ηενιςματι</u>

#	Article	IF	CITATIONS
1	Increased hippocampal neurogenesis in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 343-347.	7.1	932
2	Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 2012, 18, 1087-1094.	30.7	423
3	To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Progress in Neurobiology, 2003, 69, 103-142.	5.7	272
4	Endotoxin Preconditioning Prevents Cellular Inflammatory Response During Ischemic Neuroprotection in Mice. Stroke, 2004, 35, 2576-2581.	2.0	225
5	Neuroprotective Actions of FK506 in Experimental Stroke: <i>In Vivo</i> Evidence against an Antiexcitotoxic Mechanism. Journal of Neuroscience, 1997, 17, 6939-6946.	3.6	203
6	MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurology, The, 2016, 15, 1368-1376.	10.2	200
7	CREB-Mediated Bcl-2 Protein Expression after Ischemic Preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 234-246.	4.3	198
8	Epilepsy and Apoptosis Pathways. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1557-1572.	4.3	196
9	miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132. American Journal of Pathology, 2011, 179, 2519-2532.	3.8	194
10	Activation of Bcl-2-Associated Death Protein and Counter-Response of Akt within Cell Populations during Seizure-Induced Neuronal Death. Journal of Neuroscience, 2002, 22, 8458-8465.	3.6	176
11	Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB Journal, 2012, 26, 1616-1628.	0.5	173
12	Endotoxin Preconditioning Protects against the Cytotoxic Effects of TNFα after Stroke: A Novel Role for TNFα in LPS-Ischemic Tolerance. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1663-1674.	4.3	142
13	Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138, 616-631.	7.6	140
14	Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Research, 2008, 1213, 140-151.	2.2	137
15	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	5.1	131
16	Increased neocortical expression of the <scp>P</scp> 2X7 receptor after status epilepticus and anticonvulsant effect of <scp>P</scp> 2X7 receptor antagonist <scp>A</scp> â€438079. Epilepsia, 2013, 54, 1551-1561.	5.1	130
17	Involvement of Caspaseâ€3‣ike Protease in the Mechanism of Cell Death Following Focally Evoked Limbic Seizures. Journal of Neurochemistry, 2000, 74, 1215-1223.	3.9	127
18	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	3.6	127

#	Article	IF	CITATIONS
19	Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis. PLoS ONE, 2012, 7, e35921.	2.5	121
20	Induction of Oxidative DNA Damage in the Peri-Infarct Region After Permanent Focal Cerebral Ischemia. Journal of Neurochemistry, 2002, 75, 1716-1728.	3.9	120
21	MicroRNA and epilepsy. Current Opinion in Neurology, 2014, 27, 199-205.	3.6	109
22	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
23	Cleavage of Bid May Amplify Caspase-8-Induced Neuronal Death Following Focally Evoked Limbic Seizures. Neurobiology of Disease, 2001, 8, 568-580.	4.4	105
24	Activation of Poly(ADP-Ribose) Polymerase in the Rat Hippocampus May Contribute to Cellular Recovery Following Sublethal Transient Global Ischemia. Journal of Neurochemistry, 2002, 74, 1636-1645.	3.9	103
25	Epilepsy and microRNA. Neuroscience, 2013, 238, 218-229.	2.3	103
26	Differential DNA Methylation Patterns Define Status Epilepticus and Epileptic Tolerance. Journal of Neuroscience, 2012, 32, 1577-1588.	3.6	102
27	Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Structure and Function, 2015, 220, 2387-2399.	2.3	101
28	microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports, 2015, 5, 17486.	3.3	98
29	CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures. Brain, 2013, 136, 577-592.	7.6	95
30	Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Scientific Reports, 2017, 7, 3328.	3.3	93
31	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	10.1	92
32	The Epigenetics of Epilepsy and Its Progression. Neuroscientist, 2018, 24, 186-200.	3.5	91
33	Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. European Journal of Neuroscience, 2003, 17, 2065-2076.	2.6	88
34	Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine, 2018, 38, 127-141.	6.1	88
35	ATPergic signalling during seizures and epilepsy. Neuropharmacology, 2016, 104, 140-153.	4.1	86
36	A microRNAâ€129â€5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO Journal, 2017, 36, 1770-1787.	7.8	85

#	Article	IF	CITATIONS
37	Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Experimental Neurology, 2012, 237, 346-354.	4.1	81
38	Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. Journal of Clinical Investigation, 2004, 113, 1059-1068.	8.2	78
39	Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse. Journal of Neuroscience Research, 2002, 69, 614-621.	2.9	77
40	Endoplasmic Reticulum Stress and Apoptosis Signaling in Human Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2006, 65, 217-225.	1.7	72
41	MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Reports, 2016, 17, 37-45.	6.4	71
42	Elevation of plasma tRNA fragments precedes seizures in human epilepsy. Journal of Clinical Investigation, 2019, 129, 2946-2951.	8.2	71
43	Expression of deathâ€associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. Journal of Neurochemistry, 2003, 86, 1260-1270.	3.9	68
44	Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiology of Disease, 2008, 32, 442-453.	4.4	68
45	Cell Signaling Underlying Epileptic Behavior. Frontiers in Behavioral Neuroscience, 2011, 5, 45.	2.0	68
46	Epigenetics and Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022731.	6.2	68
47	Reduced hippocampal damage and epileptic seizures after <i>status epilepticus</i> in mice lacking proapoptotic Puma. FASEB Journal, 2010, 24, 853-861.	0.5	65
48	Formation of the Base Modification 8-Hydroxyl-2′ - Deoxyguanosine and DNA Fragmentation Following Seizures Induced by Systemic Kainic Acid in the Rat. Journal of Neurochemistry, 2001, 74, 302-309.	3.9	63
49	Convulsant Doses of a Dopamine D1 Receptor Agonist Result in Erk-Dependent Increases in Zif268 and Arc/Arg3.1 Expression in Mouse Dentate Gyrus. PLoS ONE, 2011, 6, e19415.	2.5	63
50	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. Scientific Reports, 2019, 9, 15437.	3.3	63
51	Potent Anti-seizure Effects of Locked Nucleic Acid Antagomirs Targeting miR-134 in Multiple Mouse and Rat Models of Epilepsy. Molecular Therapy - Nucleic Acids, 2017, 6, 45-56.	5.1	62
52	Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. Journal of Clinical Investigation, 2004, 113, 1059-1068.	8.2	62
53	<i>In vivo</i> Contributions of BH3-Only Proteins to Neuronal Death Following Seizures, Ischemia, and Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1196-1210.	4.3	61
54	lgG Leakage May Contribute to Neuronal Dysfunction in Drug-Refractory Epilepsies With Blood-Brain Barrier Disruption. Journal of Neuropathology and Experimental Neurology, 2012, 71, 826-838.	1.7	60

#	Article	IF	CITATIONS
55	P2X7 Receptor Inhibition Interrupts the Progression of Seizures in Immature Rats and Reduces Hippocampal Damage. CNS Neuroscience and Therapeutics, 2014, 20, 556-564.	3.9	58
56	Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS ONE, 2016, 11, e0156468.	2.5	57
57	Increased Expression of MicroRNA-29a in ALS Mice: Functional Analysis of Its Inhibition. Journal of Molecular Neuroscience, 2014, 53, 231-241.	2.3	56
58	MicroRNAs in the pathophysiology and treatment of status epilepticus. Frontiers in Molecular Neuroscience, 2013, 6, 37.	2.9	55
59	Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Frontiers in Cellular Neuroscience, 2013, 7, 110.	3.7	54
60	Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Human Molecular Genetics, 2016, 25, 4143-4156.	2.9	54
61	Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadmap. Nature Reviews Neurology, 2021, 17, 231-242.	10.1	54
62	Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis?. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 1, 97-115.	0.8	54
63	"TORNADO―– Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Scientific Reports, 2017, 7, 1750.	3.3	53
64	Bcl-w Protects Hippocampus during Experimental Status Epilepticus. American Journal of Pathology, 2007, 171, 1258-1268.	3.8	52
65	microRNA and Epilepsy. Advances in Experimental Medicine and Biology, 2015, 888, 41-70.	1.6	52
66	Bax Regulates Neuronal Ca ²⁺ Homeostasis. Journal of Neuroscience, 2015, 35, 1706-1722.	3.6	52
67	Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice. Neurobiology of Disease, 2015, 83, 100-114.	4.4	52
68	Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drugâ€refractory epilepsy. Epilepsia, 2017, 58, 1603-1614.	5.1	51
69	Modulators of neuronal cell death in epilepsy. Current Opinion in Pharmacology, 2008, 8, 75-81.	3.5	50
70	Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain, 2013, 136, 1161-1176.	7.6	49
71	EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics, 2016, 32, 1436-1438.	4.1	48
72	Death-associated protein kinase expression in human temporal lobe epilepsy. Annals of Neurology, 2004, 55, 485-494.	5.3	47

#	Article	IF	CITATIONS
73	NMDA receptorâ€mediated excitotoxic neuronal apoptosis <i>in vitro</i> and <i>in vivo</i> occurs in an ER stress and PUMA independent manner. Journal of Neurochemistry, 2008, 105, 891-903.	3.9	47
74	Identification of a Novel Bcl-2-interacting Mediator of Cell Death (Bim) E3 Ligase, Tripartite Motif-containing Protein 2 (TRIM2), and Its Role in Rapid Ischemic Tolerance-induced Neuroprotection. Journal of Biological Chemistry, 2011, 286, 19331-19339.	3.4	47
75	Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. Journal of Neuroscience, 2016, 36, 4564-4578.	3.6	47
76	Involvement of micro <scp>RNA</scp> s in epileptogenesis. Epilepsia, 2016, 57, 1015-1026.	5.1	47
77	Microvascular stabilization via blood-brainÂbarrier regulation prevents seizure activity. Nature Communications, 2022, 13, 2003.	12.8	47
78	Development of a model of seizure-induced hippocampal injury with features of programmed cell death in the BALB/c mouse. Journal of Neuroscience Research, 2004, 76, 121-128.	2.9	46
79	microRNAs in the pathophysiology of epilepsy. Neuroscience Letters, 2018, 667, 47-52.	2.1	46
80	Upregulation of Mitochondrial Base-Excision Repair Capability within Rat Brain after Brief Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 88-98.	4.3	45
81	Microarray profile of seizure damage-refractory hippocampal CA3 in a mouse model of epileptic preconditioning. Neuroscience, 2007, 150, 467-477.	2.3	45
82	Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology, 2008, 54, 1051-1061.	4.1	45
83	P2X receptors as targets for the treatment of status epilepticus. Frontiers in Cellular Neuroscience, 2013, 7, 237.	3.7	45
84	Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology, 2017, 116, 351-363.	4.1	44
85	Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo. PLoS ONE, 2013, 8, e54491.	2.5	44
86	Caspase-3 Cleavage and Nuclear Localization of Caspase-Activated DNase in Human Temporal Lobe Epilepsy. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 583-589.	4.3	43
87	Isoform- and subcellular fraction-specific differences in hippocampal 14-3-3 levels following experimentally evoked seizures and in human temporal lobe epilepsy. Journal of Neurochemistry, 2006, 99, 561-569.	3.9	42
88	P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy and Behavior, 2015, 49, 8-12.	1.7	42
89	Elevated Plasma microRNA-206 Levels Predict Cognitive Decline and Progression to Dementia from Mild Cognitive Impairment. Biomolecules, 2019, 9, 734.	4.0	41
90	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	7.1	41

#	Article	IF	CITATIONS
91	Caspase-2 activation is redundant during seizure-induced neuronal death. Journal of Neurochemistry, 2001, 77, 886-895.	3.9	40
92	Experimental Neonatal Status Epilepticus and the Development of Temporal Lobe Epilepsy with Unilateral Hippocampal Sclerosis. American Journal of Pathology, 2010, 176, 330-342.	3.8	40
93	Mutation of Semaphorin-6A Disrupts Limbic and Cortical Connectivity and Models Neurodevelopmental Psychopathology. PLoS ONE, 2011, 6, e26488.	2.5	40
94	Bcl-w expression is increased in brain regions affected by focal cerebral ischemia in the rat. Neuroscience Letters, 2000, 279, 193-195.	2.1	39
95	Evidence of tumor necrosis factor receptor 1 signaling in human temporal lobe epilepsy. Experimental Neurology, 2006, 202, 410-420.	4.1	39
96	Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells. Molecular Therapy, 2020, 28, 1190-1199.	8.2	39
97	Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends in Pharmacological Sciences, 2021, 42, 605-616.	8.7	39
98	Depletion of 14â€3â€3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainateâ€induced injury in mouse hippocampal cultures. Journal of Neurochemistry, 2008, 106, 978-988.	3.9	38
99	Context-Specific Switch from Anti- to Pro-epileptogenic Function of the P2Y ₁ Receptor in Experimental Epilepsy. Journal of Neuroscience, 2019, 39, 5377-5392.	3.6	37
100	P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 174-87.	0.8	36
101	Spatio-temporally restricted blood–brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Research, 2013, 103, 167-179.	1.6	35
102	Kainic Acid-Induced Seizures Modulate Akt (SER473) Phosphorylation in the Hippocampus of Dopamine D2 Receptor Knockout Mice. Journal of Molecular Neuroscience, 2013, 49, 202-210.	2.3	35
103	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	4.4	35
104	Subcellular distribution of Bcl-2 family proteins and 14-3-3 within the hippocampus during seizure-induced neuronal death in the rat. Neuroscience Letters, 2004, 356, 163-166.	2.1	34
105	Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Research, 2007, 77, 151-156.	1.6	34
106	Targeting microRNA-134 for seizure control and disease modification in epilepsy. EBioMedicine, 2019, 45, 646-654.	6.1	34
107	Spatio-temporal profile of DNA fragmentation and its relationship to patterns of epileptiform activity following focally evoked limbic seizures. Brain Research, 2000, 858, 290-302.	2.2	33
108	miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plasticity, 2017, 3, 43-59.	3.5	33

#	Article	IF	CITATIONS
109	Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	6.3	32
110	Discovery and validation of blood micro <scp>RNA</scp> s as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open, 2018, 3, 427-436.	2.4	32
111	A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 255-266.	4.1	31
112	Expression and Differential Processing of Caspases 6 and 7 in Relation to Specific Epileptiform EEG Patterns Following Limbic Seizures. Neurobiology of Disease, 2002, 10, 71-87.	4.4	29
113	Relationship Between Seizure-Induced Transcription of the DNA Damage-Inducible Gene GADD45, DNA Fragmentation, and Neuronal Death in Focally Evoked Limbic Epilepsy. Journal of Neurochemistry, 2002, 73, 1573-1583.	3.9	29
114	Expression, interaction, and proteolysis of death-associated protein kinase and p53 within vulnerable and resistant hippocampal subfields following seizures. Hippocampus, 2004, 14, 326-336.	1.9	29
115	Regulatory Mechanisms of the RNA Modification m6A and Significance in Brain Function in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 671932.	3.7	29
116	High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers. PLoS ONE, 2015, 10, e0145316.	2.5	29
117	Complex spectrum of phenobarbital effects in a mouse model of neonatal hypoxia-induced seizures. Scientific Reports, 2018, 8, 9986.	3.3	28
118	Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.	3.6	28
119	Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus. Frontiers in Neuroscience, 2019, 13, 1404.	2.8	27
120	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	2.9	26
121	Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice. Epilepsy Research, 2010, 88, 151-161.	1.6	24
122	BH3â€only protein Bid is dispensable for seizureâ€induced neuronal death and the associated nuclear accumulation of apoptosisâ€inducing factor. Journal of Neurochemistry, 2010, 115, 92-101.	3.9	24
123	Bi-lateral changes to hippocampal cholesterol levels during epileptogenesis and in chronic epilepsy following focal-onset status epilepticus in mice. Brain Research, 2012, 1480, 81-90.	2.2	23
124	Antagomirs and micro <scp>RNA</scp> in status epilepticus. Epilepsia, 2013, 54, 17-19.	5.1	23
125	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	10.8	23
126	Circulating P2X7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy. Cells, 2021, 10, 2444.	4.1	23

#	Article	IF	CITATIONS
127	Seizure preconditioning and epileptic tolerance: models and mechanisms. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 1, 180-191.	0.8	23
128	Interaction of 14-3-3 with Bid during seizure-induced neuronal death. Journal of Neurochemistry, 2004, 86, 460-469.	3.9	22
129	Mitochondrial localization of the Forkhead box class O transcription factor <scp>FOXO</scp> 3a in brain. Journal of Neurochemistry, 2013, 124, 749-756.	3.9	21
130	Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia, 2021, 62, 817-828.	5.1	21
131	Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiology of Disease, 2021, 148, 105179.	4.4	20
132	Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Molecular Therapy, 2021, 29, 2041-2052.	8.2	20
133	CHD2-Related CNS Pathologies. International Journal of Molecular Sciences, 2021, 22, 588.	4.1	20
134	Increased expression of the ATPâ€gated P2X7 receptor reduces responsiveness to antiâ€convulsants during status epilepticus in mice. British Journal of Pharmacology, 2022, 179, 2986-3006.	5.4	20
135	Expression, proteolysis and activation of caspases 6 and 7 during rat C6 glioma cell apoptosis. Neuroscience Letters, 2002, 324, 33-36.	2.1	19
136	Bclâ€⊋ homology domain 3â€only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition <i>in vivo</i> . European Journal of Neuroscience, 2011, 33, 401-408.	2.6	19
137	Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular Brain, 2020, 13, 114.	2.6	18
138	Increased Bcl-w expression following focally evoked limbic seizures in the rat. Neuroscience Letters, 2001, 305, 153-156.	2.1	17
139	Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology, 2017, 42, 1349-1360.	5.4	17
140	Manipulating MicroRNAs in Murine Models: Targeting the Multi-Targeting in Epilepsy. Epilepsy Currents, 2017, 17, 43-47.	0.8	17
141	Spared <scp>CA</scp> 1 pyramidal neuron function and hippocampal performance following antisense knockdown of micro <scp>RNA</scp> â€134. Epilepsia, 2018, 59, 1518-1526.	5.1	17
142	Advancing research toward faster diagnosis, better treatment, and end of stigma in epilepsy. Epilepsia, 2019, 60, 1281-1292.	5.1	17
143	High concordance between hippocampal transcriptome of the mouse intraâ€amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia, 2020, 61, 2795-2810.	5.1	17
144	Epigenetics explained: a topic "primer―for the epilepsy community by the ILAE Genetics/Epigenetics Task Force. Epileptic Disorders, 2020, 22, 127-141.	1.3	17

#	Article	IF	CITATIONS
145	Effects of transient focal cerebral ischemia in mice deficient in puma. Neuroscience Letters, 2009, 451, 237-240.	2.1	16
146	Elevated serum Bcl-2 in children with temporal lobe epilepsy. Seizure: the Journal of the British Epilepsy Association, 2012, 21, 250-253.	2.0	16
147	Hsp27 binding to the 3′UTR of <i>bim</i> mRNA prevents neuronal death during oxidative stress–induced injury: a novel cytoprotective mechanism. Molecular Biology of the Cell, 2014, 25, 3413-3423.	2.1	16
148	Transcriptional Response of Polycomb Group Genes to Status Epilepticus in Mice is Modified by Prior Exposure to Epileptic Preconditioning. Frontiers in Neurology, 2015, 6, 46.	2.4	16
149	RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Scientific Reports, 2017, 7, 41517.	3.3	16
150	The Anti-inflammatory Compound Candesartan Cilexetil Improves Neurological Outcomes in a Mouse Model of Neonatal Hypoxia. Frontiers in Immunology, 2019, 10, 1752.	4.8	16
151	MicroRNAs as biomarkers and treatment targets in status epilepticus. Epilepsy and Behavior, 2019, 101, 106272.	1.7	16
152	Can Genes Modify Stroke Outcome and By What Mechanisms?. Stroke, 2012, 43, 286-291.	2.0	15
153	Direct, non-amplified detection of microRNA-134 in plasma from epilepsy patients. RSC Advances, 2015, 5, 90071-90078.	3.6	15
154	Comparison of short-term effects of midazolam and lorazepam in the intra-amygdala kainic acid model of status epilepticus in mice. Epilepsy and Behavior, 2015, 51, 191-198.	1.7	15
155	Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Frontiers in Pharmacology, 2018, 9, 170.	3.5	14
156	Epigenetics and noncoding RNA: Recent developments and future therapeutic opportunities. European Journal of Paediatric Neurology, 2020, 24, 30-34.	1.6	14
157	Poststatus Epilepticus Models: Focal Kainic Acid. , 2017, , 611-624.		13
158	Enrichment of Circular RNA Expression Deregulation at the Transition to Recurrent Spontaneous Seizures in Experimental Temporal Lobe Epilepsy. Frontiers in Genetics, 2021, 12, 627907.	2.3	13
159	Antagomir-mediated suppression of microRNA-134 reduces kainic acid-induced seizures in immature mice. Scientific Reports, 2021, 11, 340.	3.3	13
160	Expression of neurogenesis genes in human temporal lobe epilepsy with hippocampal sclerosis. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 38-47.	0.8	13
161	AntimiR targeting of microRNA-134 reduces seizures in a mouse model of Angelman syndrome. Molecular Therapy - Nucleic Acids, 2022, 28, 514-529.	5.1	13
162	Life-span characterization of epilepsy and comorbidities in Dravet syndrome mice carrying a targeted deletion of exon 1 of the Scn1a gene. Experimental Neurology, 2022, 354, 114090.	4.1	13

#	Article	IF	CITATIONS
163	Detection of 14-3-3ζ in cerebrospinal fluid following experimentally evoked seizures. Biomarkers, 2008, 13, 377-384.	1.9	12
164	Quantification of tRNA fragments by electrochemical direct detection in small volume biofluid samples. Scientific Reports, 2020, 10, 7516.	3.3	12
165	Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Molecular Neurobiology, 2020, 57, 4322-4344.	4.0	12
166	Detection of spontaneous seizures in EEGs in multiple experimental mouse models of epilepsy. Journal of Neural Engineering, 2021, 18, 056060.	3.5	12
167	Epigenetic changes in status epilepticus. Epilepsia, 2018, 59, 82-86.	5.1	11
168	Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain, 2020, 143, 2139-2153.	7.6	11
169	Proteomic analysis of 14-3-3 zeta binding proteins in the mouse hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 74-83.	0.8	11
170	Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimulation, 2019, 12, 1390-1401.	1.6	10
171	Cell Death and Survival Mechanisms after Single and Repeated Brief Seizures. , 2012, , 362-376.		10
172	Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Currents, 2020, 20, 23S-30S.	0.8	9
173	RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS ONE, 2018, 13, e0207952.	2.5	8
174	Proteomic Analysis After Status Epilepticus Identifies UCHL1 as Protective Against Hippocampal Injury. Neurochemical Research, 2017, 42, 2033-2054.	3.3	7
175	Predictive modelling of hypoxic ischaemic encephalopathy risk following perinatal asphyxia. Heliyon, 2021, 7, e07411.	3.2	7
176	Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus. Epilepsy and Behavior, 2016, 64, 186-194.	1.7	6
177	GABA Regulation of Burst Firing in Hippocampal Astrocyte Neural Circuit: A Biophysical Model. Frontiers in Cellular Neuroscience, 2019, 13, 335.	3.7	6
178	P2X7 Receptor-Dependent microRNA Expression Profile in the Brain Following Status Epilepticus in Mice. Frontiers in Molecular Neuroscience, 2020, 13, 127.	2.9	6
179	Tubby-like protein 1 (Tulp1) is a target of microRNA-134 and is down-regulated in experimental epilepsy. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 178-187.	0.8	6
180	Electroencephalographic and behavioral convulsant effects of hydrobromide and hydrochloride salts of bupropion in conscious rodents. Neuropsychiatric Disease and Treatment, 2009, 5, 189.	2.2	5

#	Article	IF	CITATIONS
181	Suppression of TNF receptor-1 signaling in an in vitro model of epileptic tolerance. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 120-32.	0.8	5
182	<scp>MicroRNA</scp> inhibition using <scp>antimiRs</scp> in acute human brain tissue sections. Epilepsia, 2022, 63, .	5.1	5
183	Bilateral intranigral NMDA infusion suppresses neuronal injury without affecting the duration of kainic acid-induced seizures in rats. Neuroscience Letters, 1998, 251, 69-71.	2.1	4
184	Overexpression of 14-3-3ζ Increases Brain Levels of C/EBP Homologous Protein CHOP. Journal of Molecular Neuroscience, 2015, 56, 255-262.	2.3	4
185	Generation of six induced pluripotent stem cell (iPSC) lines from two patients with amyotrophic lateral sclerosis (NUIGi043-A, NUIGi043-B, NUIGi043-C, NUIGi044-A, NUIGi044-B, NUIGi044-C). Stem Cell Research, 2019, 40, 101558.	0.7	4
186	Systemic delivery of selective EP1 and EP3 receptor antagonists attenuates pentylenetetrazole-induced seizures in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 47-59.	0.8	4
187	Targeting the proteasome in epilepsy. Oncotarget, 2017, 8, 45042-45043.	1.8	3
188	Investigating Gene Promoter Methylation in a Mouse Model of Status Epilepticus. Methods in Molecular Biology, 2013, 1067, 87-101.	0.9	2
189	Detection of MicroRNAs in Brain Slices Using In Situ Hybridization. Methods in Molecular Biology, 2017, 1509, 85-91.	0.9	2
190	Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death and Disease, 2018, 8, e2556-e2556.	6.3	2
191	Generation of twelve induced pluripotent stem cell lines from two healthy controls and two patients with sporadic amyotrophic lateral sclerosis. Stem Cell Research, 2020, 44, 101752.	0.7	2
192	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
193	Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus. International Journal of Physiology, Pathophysiology and Pharmacology, 2014, 6, 199-208.	0.8	1
194	BICS01 Mediates Reversible Anti-seizure Effects in Brain Slice Models of Epilepsy. Frontiers in Neurology, 2021, 12, 791608.	2.4	1
195	Meeting report: EpiXchange II brings together European epilepsy research projects to discuss latest advances. Epilepsy Research, 2021, 178, 106811.	1.6	1
196	Electrochemiluminescent detection of epilepsy biomarker miR-134 using a metal complex light switch. Bioelectrochemistry, 2022, 146, 108150.	4.6	1
197	Focally Applied Chemoconvulsants. , 2017, , 513-527.		0
198	Could miR-134 be a marker of ionizing radiation toxicity?. Non-coding RNA Investigation, 2018, 2, 24-24.	0.6	0

#	Article	IF	CITATIONS
199	Brain delivery of a virus to block seizures helps mice get a silent NACHT. EBioMedicine, 2019, 47, 8-9.	6.1	0
200	Building a supportive framework for brain research in Ireland: Inaugural position paper of the Irish Brain Council. European Journal of Neuroscience, 2019, 49, 1362-1370.	2.6	0
201	Preconditioning for Epilepsy. , 2013, , 521-539.		Ο