Dietrich Ober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5923565/publications.pdf Version: 2024-02-01

DIFTRICH ORFR

#	Article	IF	CITATIONS
1	Insights into polyamine metabolism: homospermidine is double-oxidized in two discrete steps by a single copper-containing amine oxidase in pyrrolizidine alkaloid biosynthesis. Plant Cell, 2022, 34, 2364-2382.	6.6	11
2	Development of an activity assay for characterizing deoxyhypusine synthase and its diverse reaction products. FEBS Open Bio, 2021, 11, 10-25.	2.3	5
3	CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids. Molecules, 2021, 26, 1498.	3.8	19
4	Specific Distribution of Pyrrolizidine Alkaloids in Floral Parts of Comfrey (Symphytum officinale) and its Implications for Flower Ecology. Journal of Chemical Ecology, 2019, 45, 128-135.	1.8	23
5	Reduction of Pyrrolizidine Alkaloid Levels in Comfrey (Symphytum officinale) Hairy Roots by RNAi Silencing of Homospermidine Synthase. Planta Medica, 2019, 85, 1177-1186.	1.3	12
6	Crystal structure of pyrrolizidine alkaloid <i>N</i> -oxygenase from the grasshopper <i>Zonocerus variegatus</i> . Acta Crystallographica Section D: Structural Biology, 2018, 74, 422-432.	2.3	12
7	Radioactive Tracer Feeding Experiments and Product Analysis to Determine the Biosynthetic Capability of Comfrey (Symphytum officinale) Leaves for Pyrrolizidine Alkaloids. Bio-protocol, 2018, 8, e2719.	0.4	2
8	Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage [,] . Plant Physiology, 2017, 174, 47-55.	4.8	21
9	Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae). Frontiers in Plant Science, 2017, 8, 2046.	3.6	9
10	Comprehensive Structural Characterization of the Bacterial Homospermidine Synthase–an Essential Enzyme of the Polyamine Metabolism. Scientific Reports, 2016, 6, 19501.	3.3	19
11	Familial classification of the Boraginales. Taxon, 2016, 65, 502-522.	0.7	93
12	Paralogue Interference Affects the Dynamics after Gene Duplication. Trends in Plant Science, 2015, 20, 814-821.	8.8	31
13	Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis. Phytochemistry, 2015, 117, 17-24.	2.9	7
14	New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in <i>Crotalaria</i> depends on nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4164-4169.	7.1	52
15	Evolution of Homospermidine Synthase in the Convolvulaceae: A Story of Gene Duplication, Gene Loss, and Periods of Various Selection Pressures Â. Plant Cell, 2013, 25, 1213-1227.	6.6	38
16	Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales Â. Plant Physiology, 2012, 159, 920-929.	4.8	18
17	Independent Recruitment of a Flavin-Dependent Monooxygenase for Safe Accumulation of Sequestered Pyrrolizidine Alkaloids in Grasshoppers and Moths. PLoS ONE, 2012, 7, e31796.	2.5	23
18	Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry, 2011, 72, 1576-1584.	2.9	22

DIETRICH OBER

#	Article	IF	CITATIONS
19	The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochemistry Reviews, 2011, 10, 3-74.	6.5	64
20	Flavin-Dependent Monooxygenases as a Detoxification Mechanism in Insects: New Insights from the Arctiids (Lepidoptera). PLoS ONE, 2010, 5, e10435.	2.5	60
21	Evolution of pyrrolizidine alkaloids in Phalaenopsis orchids and other monocotyledons: Identification of deoxyhypusine synthase, homospermidine synthase and related pseudogenes. Phytochemistry, 2009, 70, 508-516.	2.9	24
22	Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors. Plant Molecular Biology, 2009, 71, 145-155.	3.9	13
23	Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry, 2009, 70, 1687-1695.	2.9	68
24	Pyrrolizidine Alkaloid Biosynthesis in <i>Phalaenopsis</i> Orchids: Developmental Expression of Alkaloid-Specific Homospermidine Synthase in Root Tips and Young Flower Buds. Plant Physiology, 2008, 148, 751-760.	4.8	23
25	Defense by Pyrrolizidine Alkaloids: Developed by Plants and Recruited by Insects. , 2008, , 213-231.		22
26	Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry, 2007, 68, 1026-1037.	2.9	48
27	Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry, 2006, 67, 1493-1502.	2.9	42
28	Recruitment of alkaloid-specific homospermidine synthase (HSS) from ubiquitous deoxyhypusine synthase: Does Crotalaria possess a functional HSS that still has DHS activity?. Phytochemistry, 2005, 66, 1346-1357.	2.9	17
29	Seeing double: gene duplication and diversification in plant secondary metabolism. Trends in Plant Science, 2005, 10, 444-449.	8.8	153
30	Polyphyletic Origin of Pyrrolizidine Alkaloids within the Asteraceae. Evidence from Differential Tissue Expression of Homospermidine Synthase. Plant Physiology, 2004, 136, 4037-4047.	4.8	51
31	Repeated Evolution of the Pyrrolizidine Alkaloid–Mediated Defense System in Separate Angiosperm Lineages wâ∫ž. Plant Cell, 2004, 16, 2772-2784.	6.6	94
32	Evidence for general occurrence of homospermidine in plants and its supposed origin as by-product of deoxyhypusine synthase. Phytochemistry, 2003, 62, 339-344.	2.9	34
33	Chapter nine Chemical ecology of alkaloids exemplified with the pyrrolizidines. Recent Advances in Phytochemistry, 2003, 37, 203-230.	0.5	10
34	Molecular Evolution by Change of Function. Journal of Biological Chemistry, 2003, 278, 12805-12812.	3.4	58
35	Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6085-6090.	7.1	113
36	Cell-Specific Expression of Homospermidine Synthase, the Entry Enzyme of the Pyrrolizidine Alkaloid Pathway in Senecio vernalis, in Comparison with Its Ancestor, Deoxyhypusine Synthase. Plant Physiology, 2002, 130, 47-57.	4.8	68

DIETRICH OBER

#	Article	IF	CITATIONS
37	Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Molecular Biology, 2000, 44, 445-450.	3.9	42
38	Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores. Topics in Current Chemistry, 2000, , 207-243.	4.0	99
39	Deoxyhypusine Synthase from Tobacco. Journal of Biological Chemistry, 1999, 274, 32040-32047.	3.4	78
40	Homospermidine synthase of Rhodopseudomonas viridis: Substrate specificity and effects of the heterologously expressed enzyme on polyamine metabolism of Escherichia coli Journal of General and Applied Microbiology, 1996, 42, 411-419.	0.7	17
41	Purification, Molecular Cloning and Expression in Escherichia coli of Homospermidine Synthase from Rhodopseudomonas viridis. FEBS Journal, 1996, 240, 373-379.	0.2	38
42	Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Canadian Journal of Chemistry, 1994, 72, 80-85.	1.1	60
43	A complete digitization of German herbaria is possible, sensible and should be started now. Research Ideas and Outcomes .0.6	1.0	18