Michihiko Ike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/592338/publications.pdf Version: 2024-02-01

MICHIHIKO IKE

#	Article	IF	CITATIONS
1	Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Research, 2011, 45, 1629-1638.	11.3	185
2	Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. Journal of Bioscience and Bioengineering, 2000, 89, 528-533.	2.2	114
3	Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresource Technology, 2010, 101, 3952-3957.	9.6	114
4	Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis. Journal of Bioscience and Bioengineering, 2009, 108, 147-150.	2.2	100
5	Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environmental Toxicology, 2002, 17, 457-461.	4.0	95
6	Laboratory-scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination, 2011, 279, 433-438.	8.2	93
7	Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation, 2013, 24, 665-674.	3.0	87
8	Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. Journal of Bioscience and Bioengineering, 1999, 88, 542-550.	2.2	84
9	Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Science of the Total Environment, 2009, 407, 1588-1597.	8.0	84
10	Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. Journal of Bioscience and Bioengineering, 2011, 112, 259-264.	2.2	83
11	Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Bioscience and Bioengineering, 1997, 83, 517-522.	0.9	82
12	Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase byÂPseudomonas stutzeri NT-I. Water Research, 2013, 47, 1361-1368.	11.3	79
13	Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium,Bacillus sp. SF-1. Biotechnology and Bioengineering, 2002, 80, 755-761.	3.3	78
14	Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1060-1064.	1.7	75
15	Biodegradation of a polyvinyl alcohol-starch blend plastic film. World Journal of Microbiology and Biotechnology, 1999, 15, 321-327.	3.6	71
16	Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere. Journal of Bioscience and Bioengineering, 2006, 101, 346-353.	2.2	69
17	Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors. Bioresource Technology, 2014, 174, 159-166.	9.6	67
18	1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation, 2016, 27, 277-286.	3.0	67

#	Article	lF	CITATIONS
19	Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Science of the Total Environment, 2017, 578, 566-576.	8.0	67
20	Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Research, 2000, 34, 3019-3025.	11.3	65
21	Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnology for Biofuels, 2017, 10, 62.	6.2	64
22	A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Research, 2010, 44, 4195-4203.	11.3	59
23	Isolation and Characterization of 4- <i>tert</i> -Butylphenol-Utilizing <i>Sphingobium fuliginis</i> Strains from <i>Phragmites australis</i> Rhizosphere Sediment. Applied and Environmental Microbiology, 2010, 76, 6733-6740.	3.1	58
24	Acceleration of Nonylphenol and 4- <i>tert</i> -Octylphenol Degradation in Sediment by <i>Phragmites australis</i> and Associated Rhizosphere Bacteria. Environmental Science & Technology, 2011, 45, 6524-6530.	10.0	57
25	Molecular Cloning and Characterization of the <i>srdBCA</i> Operon, Encoding the Respiratory Selenate Reductase Complex, from the Selenate-Reducing Bacterium Bacillus selenatarsenatis SF-1. Journal of Bacteriology, 2011, 193, 2141-2148.	2.2	56
26	Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities. Journal of Hazardous Materials, 2018, 342, 571-578.	12.4	56
27	Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. Journal of Bioscience and Bioengineering, 2003, 96, 454-460.	2.2	52
28	Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples. Biodegradation, 2010, 21, 585-591.	3.0	51
29	Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Science of the Total Environment, 2017, 584-585, 742-750.	8.0	51
30	The 4-‹i>tert‹/i>-Butylphenol-Utilizing Bacterium ‹i>Sphingobium fuliginis‹/i> OMI Can Degrade Bisphenols via Phenolic Ring Hydroxylation and ‹i>Meta‹/i>-Cleavage Pathway. Environmental Science & Technology, 2013, 47, 1017-1023.	10.0	50
31	Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. Journal of Bioscience and Bioengineering, 2014, 117, 576-581.	2.2	50
32	1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343. Biodegradation, 2018, 29, 301-310.	3.0	50
33	Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium. Biodegradation, 2013, 24, 191-202.	3.0	49
34	Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process: Mathematic modeling and batch experiments. Chemical Engineering Journal, 2015, 280, 606-613.	12.7	47
35	Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures. Journal of Bioscience and Bioengineering, 2017, 123, 505-511.	2.2	46
36	Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. Journal of Bioscience and Bioengineering, 2014, 118, 64-71.	2.2	44

#	Article	IF	CITATIONS
37	Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Research, 2019, 154, 327-335.	11.3	43
38	ldentification of Retinoic Acid Receptor Agonists in Sewage Treatment Plants. Environmental Science & Technology, 2009, 43, 6611-6616.	10.0	42
39	Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability. Journal of Bioscience and Bioengineering, 2018, 125, 552-558.	2.2	42
40	Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: A mechanism of accelerated biodegradation of phenol. Water Research, 2009, 43, 3765-3776.	11.3	39
41	Duckweed biomass as a renewable biorefinery feedstock: Ethanol and succinate production from Wolffia globosa. Biomass and Bioenergy, 2015, 81, 364-368.	5.7	38
42	Effect of Aeration on Stabilization of Organic Solid Waste and Microbial Population Dynamics in Lab-Scale Landfill Bioreactors. Journal of Bioscience and Bioengineering, 2008, 106, 425-432.	2.2	35
43	Production of a novel bioflocculant by fed-batch culture of Citrobacter sp Biotechnology Letters, 2001, 23, 593-597.	2.2	34
44	Monitoring behaviour of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation. Water Research, 2004, 38, 4405-4414.	11.3	33
45	Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors. Bioresource Technology, 2018, 259, 259-267.	9.6	33
46	Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Chemosphere, 2020, 238, 124682.	8.2	33
47	Estrogenic Activity of Branched 4-Nonylphenol Isomers Examined by Yeast Two-Hybrid Assay. Journal of Health Science, 2006, 52, 132-141.	0.9	31
48	Pilot test of biological removal of 1,4-dioxane from a chemical factory wastewater by gel carrier entrapping Afipia sp. strain D1. Journal of Hazardous Materials, 2016, 304, 251-258.	12.4	29
49	Biological wastewater treatment of 1,4-dioxane using polyethylene glycol gel carriers entrapping Afipia sp. D1. Journal of Bioscience and Bioengineering, 2016, 121, 203-208.	2.2	29
50	Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed Lemna minor. Microbial Ecology, 2019, 77, 440-450.	2.8	29
51	Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. Journal of Bioscience and Bioengineering, 2015, 119, 440-445.	2.2	27
52	Effects of planting <i>Phragmites australis</i> on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments. Environmental Technology (United Kingdom), 2016, 37, 478-485.	2.2	27
53	Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria. Plant Physiology and Biochemistry, 2017, 118, 667-673.	5.8	27
54	Abundance of polymers degrading microorganisms in a sea-based solid waste disposal site. Journal of Basic Microbiology, 2000, 40, 177-186.	3.3	26

#	Article	IF	CITATIONS
55	Novel Plant-Associated Acidobacteria Promotes Growth of Common Floating Aquatic Plants, Duckweeds. Microorganisms, 2021, 9, 1133.	3.6	26
56	Detection of Agonistic Activities Against Five Human Nuclear Receptors in River Environments of Japan Using a Yeast Two-Hybrid Assay. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 399-404.	2.7	23
57	Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan. Water Research, 2010, 44, 2409-2418.	11.3	23
58	lsolation and Characterization of Tetrahydrofuran- Degrading Bacteria for 1,4-Dioxane-Containing Wastewater Treatment by Co-Metabolic Degradation. Journal of Water and Environment Technology, 2013, 11, 11-19.	0.7	23
59	Estimation and field measurement of methane emission from waste landfills in Hanoi, Vietnam. Journal of Material Cycles and Waste Management, 2008, 10, 165-172.	3.0	22
60	Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiology Ecology, 2020, 96, .	2.7	22
61	An Enzyme-Linked Immunosorbent Assay for Detection of Linear Alkylbenzene Sulfonate: Development and Field Studies. Environmental Science & Technology, 1998, 32, 1143-1146.	10.0	21
62	Screening of agonistic activities against four nuclear receptors in wastewater treatment plants in Japan using a yeast two-hybrid assay. Journal of Environmental Sciences, 2011, 23, 125-132.	6.1	20
63	Isolation and Characterization of Bacteria Capable of Reducing Tellurium Oxyanions to Insoluble Elemental Tellurium for Tellurium Recovery from Wastewater. Waste and Biomass Valorization, 2012, 3, 409-418.	3.4	20
64	Occurrence and distribution of estrogenic chemicals in river waters of Malaysia. Toxicology and Environmental Health Sciences, 2020, 12, 65-74.	2.1	20
65	Development of Simple Methods of DNA Extraction from Environmental Samples for Monitoring Microbial Community Based on PCR Japanese Journal of Water Treatment Biology, 2000, 36, 193-204.	0.1	19
66	Removal of soluble selenium by a selenateâ€reducing bacterium <i>Bacillus</i> sp. SFâ€1. BioFactors, 2001, 14, 261-265.	5.4	19
67	Kinetics of nutrient removal and biomass production by duckweed Wolffia arrhiza in continuous-flow mesocosms. Ecological Engineering, 2013, 57, 210-215.	3.6	19
68	Characterization of moderately halotolerant selenate- and tellurite-reducing bacteria isolated from brackish areas in Osaka. Bioscience, Biotechnology and Biochemistry, 2018, 82, 173-181.	1.3	19
69	Disruption of Retinoic Acid Receptor Signaling by Environmental Pollutants. Journal of Health Science, 2010, 56, 221-230.	0.9	18
70	Transfer of plasmid pJP4 from Escherichia coli and Pseudomonas putida to bacteria in activated sludge developed under different sludge retention times. Journal of Bioscience and Bioengineering, 2010, 110, 684-689.	2.2	18
71	Biotreatment of Selenium Refinery Wastewater Using Pilot-Scale Granular Sludge and Swim-Bed Bioreactors Augmented with a Selenium-Reducing Bacterium <i>Pseudomonas stutzeri</i> NTi¼ł. Japanese Journal of Water Treatment Biology, 2012, 48, 63-71.	0.1	18
72	Treatment of 1,4-dioxane-containing water using carriers immobilized with indigenous microorganisms in landfill leachate treatment sludge: A laboratory-scale reactor study. Journal of Hazardous Materials, 2021, 414, 125497.	12.4	16

#	Article	IF	CITATIONS
73	Accelerated degradation of a variety of aromatic compounds by Spirodela polyrrhiza-bacterial associations and contribution of root exudates released from S. polyrrhiza. Journal of Environmental Sciences, 2010, 22, 494-499.	6.1	15
74	Biological 1,4-Dioxane Wastewater Treatment by Immobilized <i>Pseudonocardia</i> sp. D17 on Lower 1,4-Dioxane Concentration. Journal of Water and Environment Technology, 2016, 14, 289-301.	0.7	15
75	Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. Journal of Bioscience and Bioengineering, 2019, 127, 618-624.	2.2	15
76	Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate. Biodegradation, 2020, 31, 23-34.	3.0	15
77	Detection of retinoic acid receptor agonistic activity and identification of causative compounds in municipal wastewater treatment plants in Japan. Environmental Toxicology and Chemistry, 2012, 31, 307-315.	4.3	14
78	Kinetics of bisphenol A degradation by Sphingomonas paucimobilis FJ-4. Journal of Bioscience and Bioengineering, 2016, 122, 341-344.	2.2	14
79	High methane production potential of activated sludge accumulating polyhydroxyalkanoates in anaerobic digestion. Biochemical Engineering Journal, 2016, 114, 283-287.	3.6	14
80	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	16.2	14
81	Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	13
82	Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	13
83	Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere, 2022, 287, 131989.	8.2	13
84	Performance of plant growth-promoting bacterium of duckweed under different kinds of abiotic stress factors. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101146.	3.1	12
85	Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. Chemosphere, 2020, 238, 124606.	8.2	12
86	Isolation and Characterization of Facultative-Anaerobic Antimonate-Reducing Bacteria. Microorganisms, 2020, 8, 1435.	3.6	12
87	Growth Promotion of Giant Duckweed <i>Spirodela polyrhiza</i> (Lemnaceae) by <i>Ensifer</i> sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Molecular Plant-Microbe Interactions, 2022, 35, 28-38.	2.6	12
88	Field Test of On-Site Treatment of 1,4-Dioxane-Contaminated Groundwater Using <i>Pseudonocardia</i> sp. D17. Journal of Water and Environment Technology, 2018, 16, 256-268.	0.7	11
89	Microbial antimonate reduction and removal potentials in river sediments. Chemosphere, 2021, 266, 129192.	8.2	11
90	Technologies to Remove Selenium from Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 207-304.	0.5	11

#	Article	IF	CITATIONS
91	Enhancement of Au Dissolution by Microorganisms Using an Accelerating Cathode Reaction. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 39-44.	2.1	10
92	Genome-wide identification of bacterial colonization and fitness determinants on the floating macrophyte, duckweed. Communications Biology, 2022, 5, 68.	4.4	10
93	Draft Genome Sequence of Aquitalea magnusonii Strain H3, a Plant Growth-Promoting Bacterium of Duckweed (<i>Lemna minor</i>). Genome Announcements, 2017, 5, .	0.8	9
94	Optimization of aerobic dynamic discharge process for very rapid enrichment of polyhydroxyalkanoates-accumulating bacteria from activated sludge. Bioresource Technology, 2021, 336, 125314.	9.6	9
95	Synthetic Bacterial Community of Duckweed: A Simple and Stable System to Study Plant-microbe Interactions. Microbes and Environments, 2020, 35, n/a.	1.6	9
96	Whole structures, core taxa, and functional properties of duckweed microbiomes. Bioresource Technology Reports, 2022, 18, 101060.	2.7	9
97	Characterization of Novel 4– <i>n</i> –Butylphenol– Degrading <i>Pseudomonas veronii</i> Strains Isolated from Rhizosphere of Giant Duckweed, <i>Spirodela polyrrhiza</i> . Japanese Journal of Water Treatment Biology, 2009, 45, 83-92.	0.1	8
98	Energy Content of Organics in Municipal Wastewater Treatment Streams at Tsumori Wastewater Treatment Plant. Journal of Water and Environment Technology, 2015, 13, 89-97.	0.7	8
99	Microbial Communities on the Submerged Membranes in Full-Scale Membrane Bioreactors Treating Municipal Wastewater. Journal of Environmental Engineering, ASCE, 2018, 144, 04017084.	1.4	8
100	Performance of Lab-Scale Membrane Bioreactor for Leachate from Go Cat Landfill in Ho Chi Minh City, Vietnam. Japanese Journal of Water Treatment Biology, 2007, 43, 43-49.	0.1	8
101	Detection of retinoic acid receptor antagonist contamination in the aquatic environment of the Kinki region of Japan. Water Research, 2016, 103, 58-65.	11.3	7
102	Nitrogen-Cycling Functional Genes in Brackish and Freshwater Sediments in Yodo River in Japan. Journal of Water and Environment Technology, 2019, 17, 109-116.	0.7	7
103	Factors affecting antimonate bioreduction by Dechloromonas sp. AR-2 and Propionivibrio sp. AR-3. 3 Biotech, 2021, 11, 163.	2.2	7
104	Decolorization of Heat Treatment Liquor of Waste Sludge by the White Rot Fungus Coriolus hirsutus Japanese Journal of Water Treatment Biology, 1997, 33, 35-45.	0.1	7
105	Comparative Evaluation of Quantitative Polymerase Chain Reaction Methods for Routine Enumeration of Specific Bacterial DNA in Aquatic Samples. World Journal of Microbiology and Biotechnology, 2005, 21, 1029-1035.	3.6	6
106	Degradation of <i>sec</i> -hexylbenzene and its metabolites by a biofilm-forming yeast <i>Trichosporonasahii</i> B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 267-275.	1.7	6
107	Changes in bacterial community structure in a full-scale membrane bioreactor for municipal wastewater treatment. Journal of Bioscience and Bioengineering, 2016, 122, 97-104.	2.2	6
108	Biosynthesis of bismuth selenide nanoparticles using chalcogen-metabolizing bacteria. Applied Microbiology and Biotechnology, 2019, 103, 8853-8861.	3.6	6

#	Article	IF	CITATIONS
109	Coordination of leaf economics traits within the family of the world's fastest growing plants (Lemnaceae). Journal of Ecology, 2021, 109, 2950-2962.	4.0	6
110	Ethanol Production from Vegetative Fronds and Turions of <i>Wolffia arrhiza</i> . Japanese Journal of Water Treatment Biology, 2014, 50, 133-140.	0.1	6
111	Microalgal transformation of food processing byproducts into functional food ingredients. Bioresource Technology, 2022, 344, 126324.	9.6	6
112	Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations. Journal of Environmental Sciences, 2012, 24, 2133-2140.	6.1	5
113	Characterization of Microbial Community in Membrane Bioreactors Treating Domestic Wastewater. Journal of Water and Environment Technology, 2014, 12, 99-107.	0.7	4
114	Draft Genome Sequence of Bacillus selenatarsenatis SF-1 T , a Promising Agent for Bioremediation of Environments Contaminated with Selenium and Arsenic. Genome Announcements, 2015, 3, .	0.8	4
115	Biomass Production and Nutrient Removal through Cultivation of <i>Euglena gracilis</i> in Domestic Wastewater. Japanese Journal of Water Treatment Biology, 2018, 54, 105-113.	0.1	4
116	Complete Genome Sequences of Two Plant Growth-Inhibiting Bacteria, Acinetobacter ursingii M3 and Asticcacaulis excentricus M6, Isolated from Duckweed (Lemna minor). Microbiology Resource Announcements, 2018, 7, .	0.6	4
117	Rapid enrichment of polyhydroxyalkanoate-accumulating bacteria by the aerobic dynamic discharge process: Enrichment effectiveness, polyhydroxyalkanoate accumulation ability, and bacterial community characteristics in comparison with the aerobic dynamic feeding process. Bioresource Technology Reports, 2019, 7, 100276.	2.7	4
118	Potential of waste activated sludge to accumulate polyhydroxyalkanoates and glycogen using industrial wastewater/liquid wastes as substrates. Water Science and Technology, 2019, 80, 2373-2380.	2.5	4
119	Isolation and Characterization of Euglena gracilis-Associated Bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, Capable of Promoting the Growth and Paramylon Production of E. gracilis under Mixotrophic Cultivation. Microorganisms, 2021, 9, 1496.	3.6	4
120	Isolation and Characterization of a Floc-Forming Bacterium Sphingomonas paucimobilis 551 from Activated Sludge Japanese Journal of Water Treatment Biology, 1998, 34, 195-204.	0.1	4
121	Screening of Bacteria Capable of Producing Bioflocculants from Acetic and Propionic Acids Japanese Journal of Water Treatment Biology, 2000, 36, 183-192.	0.1	4
122	Characterization of arsenate-, selenate- and nitrate-reducing activities in Bacillus sp. SF-1. Japanese Journal of Water Treatment Biology, 2004, 40, 161-168.	0.1	4
123	Effects of Operational Conditions on Treatment Performances of Single-Stage Nitrogen Removal using Anammox and Partial Nitritation (SNAP) Process. Japanese Journal of Water Treatment Biology, 2013, 49, 133-142.	0.1	4
124	Long-term Performance and Community Analysis of Spirodela Polyrrhiza-bacteria Association Treating Phenol-contaminated Water. Journal of Water and Environment Technology, 2010, 8, 239-250.	0.7	3
125	Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World Journal of Microbiology and Biotechnology, 2014, 30, 2907-2915.	3.6	3
126	Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles. Genome Announcements, 2014, 2, .	0.8	3

#	Article	lF	CITATIONS
127	Degradation Pathway of Bisphenol S by <i>Sphingobium fuliginis</i> OMI and Removal Properties of Metabolites by Activated Sludge. Journal of Japan Society on Water Environment, 2015, 38, 139-147.	0.4	3
128	Startup of Lab-scale Anammox Reactors Seeded with Activated Sludge at Ambient Temperature. Japanese Journal of Water Treatment Biology, 2016, 52, 73-83.	0.1	3
129	Draft Genome Sequence of Pseudonocardia sp. Strain N23, a 1,4-Dioxane-Degrading Bacterium. Genome Announcements, 2017, 5, .	0.8	3
130	Potential for Enhanced Degradation and Removal of Various Bisphenols by Interaction between Common Reed (<i>Phragmites australis</i>) and Microorganisms. Journal of Water and Environment Technology, 2021, 19, 13-23.	0.7	3
131	Development and Characterization of a Chloroethenes-Dechlorinating Consortium Using Gluconate as a Hydrogen Donor. Journal of Water and Environment Technology, 2020, 18, 212-225.	0.7	3
132	Selenium Removal from Sewage Sludge Ash by Chemical Extraction and Microbial Reduction. Journal of Environmental Conservation Engineering, 2014, 43, 96-101.	0.1	3
133	Draft Genome Sequence of Rhodococcus aetherivorans JCM 14343 ^T , a Bacterium Capable of Degrading Recalcitrant Noncyclic and Cyclic Ethers. Microbiology Resource Announcements, 2020, 9, .	0.6	2
134	Effects of selection and compiling strategy of substrates in column-type vertical-flow constructed wetlands on the treatment of synthetic landfill leachate containing bisphenol A. Water Science and Technology, 2021, 84, 1428-1437.	2.5	2
135	Effect of nitrogen, phosphorus, and sulfur on the start-up of a biological 1,4-dioxane removal process using Pseudonocardia sp. D17. Biochemical Engineering Journal, 2021, 176, 108179.	3.6	2
136	Bioprocess Approaches for the Removal of Selenium from Industrial Waste and Wastewater by Pseudomonas stutzeri NT-I. , 2017, , 57-73.		2
137	Distribution of Bacterial Plasmids in an Activated Sludge Plant Japanese Journal of Water Treatment Biology, 1994, 30, 65-71.	0.1	2
138	Metabolitic Pathway of Bisphenol a by Pseudomonas paucimobilis Strain FJ-4 Japanese Journal of Water Treatment Biology, 1996, 32, 199-210.	0.1	2
139	Effect of Heating Patterns on Inactivation and Regrowth Potential of Bacterial Indicator Organisms in Simulation of Composting. Japanese Journal of Water Treatment Biology, 2003, 39, 131-138.	0.1	2
140	Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols. Genome Announcements, 2017, 5, .	0.8	1
141	Historical Trends of Academic Research on the Water Environment in Japan: Evidence from the Academic Literature in the Past 50 Years. Water (Switzerland), 2018, 10, 1456.	2.7	1
142	Biodegradation of Three Phthalic Acid Esters by Microorganisms from Aquatic Environment. Japanese Journal of Water Treatment Biology, 2005, 41, 193-201.	0.1	1
143	The Role of Compost Pile Turning for Improving Performance of Composting. Japanese Journal of Water Treatment Biology, 2008, 44, 21-28.	0.1	1
144	Multiple Detection of Occurrence of Bacterial Pathogens in Two Rivers in the Kinki District of Japan with a DNA Microarray. Japanese Journal of Water Treatment Biology, 2009, 45, 31-43.	0.1	1

#	Article	IF	CITATIONS
145	Effects of Gel-immobilization Conditions of 1,4ï¼dioxaneï¼degradading Bacterium, <i>Pseudonocardia</i> sp. strain D17, and Storage on the Treatment Performance. Japanese Journal of Water Treatment Biology, 2015, 51, 83-93.	0.1	1
146	Possibility of Simultaneous Anammox and Denitrification as an Advanced Nitrogen Removal Process. Journal of Environmental Conservation Engineering, 2014, 43, 293-300.	0.1	1
147	Screening of Anaerobic Ammonium Oxidation(Anammox) Potentials in Biomass from a Variety of Watewater Treatment Processes Japanese Journal of Water Treatment Biology, 2001, 37, 151-159.	0.1	1
148	Evaluation of Biodegradation Potential of Bisphenol A and Bisphenol F in Seawater. Japanese Journal of Water Treatment Biology, 2010, 46, 137-144.	0.1	1
149	Draft Genome Sequence of Bryobacteraceae Strain F-183. Microbiology Resource Announcements, 2022, 11, e0045321.	0.6	1
150	Complete Genome Sequence of <i>Luteitalea</i> sp. Strain TBR-22. Microbiology Resource Announcements, 2022, 11, e0045521.	0.6	1
151	Effects of External Organics on Growth and Turion Formation of Rootless Duckweed Wolffia arrhiza. Japanese Journal of Water Treatment Biology, 2015, 51, 29-35.	0.1	0
152	Model-based Evaluation of Effects of Temperature on Nitrogen Removal in Low- and Moderate-temperature Type Anammox Reactors. Japanese Journal of Water Treatment Biology, 2017, 53, 69-79.	0.1	0
153	Bioaugmenting a Lab-Scale Membrane Bioreactor with 4- <i>tert</i> -butylphenol-degrading Bacterium, <i>Sphingobium fuliginis</i> OMI. Japanese Journal of Water Treatment Biology, 2018, 54, 1-12.	0.1	0
154	Universality of Gluconate as a Hydrogen Donor for Reductive Dechlorination of Chloroethenes. Journal of Japan Society on Water Environment, 2021, 44, 69-77.	0.4	0
155	Effect of Step Feed Ratio and Temperature on Nitrogen Removal in an Anoxic-Oxic Activated Sludge Process Japanese Journal of Water Treatment Biology, 2001, 37, 19-27.	0.1	0
156	Arsenic adsorption characteristics of biogenic iron oxides in comparison to chemogenic iron oxides. Japanese Journal of Water Treatment Biology, 2012, 48, 145-156.	0.1	0
157	Monitoring the Fates of Retinoic Acids and 4-Oxo-Retinoic Acids in Municipal Wastewater Treatment Plants. Journal of Japan Society on Water Environment, 2013, 36, 57-65.	0.4	0
158	Volume Reduction of Radiocesium-Contaminated Soil by Air-Lift Washing Process:. Journal of Environmental Conservation Engineering, 2014, 43, 729-738.	0.1	0
159	Specificity of the DNA Probe for Detection of Phenol-Degrading Bacteria in Wastewater Treatment Process. Japanese Journal of Water Treatment Biology, 1991, 27, 59-65.	0.1	0
160	Issues on Existing Treatment Technologies and Possibility of Biological Treatment Technologies for 1,4ï¼Đioxane-containing Industrial Wastewater. Japanese Journal of Water Treatment Biology, 2019, 55, 1-13.	0.1	0
161	Nitrogen Removal by Simultaneous Anammox and Denitrification under Low Temperature: Preliminary Batch Trials. Japanese Journal of Water Treatment Biology, 2020, 56, 91-97.	0.1	0
162	Community Composition and Carbon Utilization Profiles of Yodo River Microbes in Brackish and Freshwater Sediments. Japanese Journal of Water Treatment Biology, 2020, 56, 17-26.	0.1	0