Gilles Lubineau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalystâ€Free Synthesis and its Application in Energy Storage Devices. Advanced Functional Materials, 2015, 25, 3193-3202.	14.9	262
2	Coaxial Thermoplastic Elastomerâ€Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors. Advanced Functional Materials, 2018, 28, 1705591.	14.9	207
3	A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon, 2012, 50, 2377-2395.	10.3	203
4	The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. Journal of Materials Chemistry C, 2014, 2, 9903-9910.	5.5	193
5	Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers. ACS Applied Materials & Interfaces, 2017, 9, 4835-4842.	8.0	184
6	A morphing strategy to couple non-local to local continuum mechanics. Journal of the Mechanics and Physics of Solids, 2012, 60, 1088-1102.	4.8	164
7	Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. Journal of Materials Chemistry C, 2015, 3, 2528-2538.	5.5	130
8	Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 2016, 8, 12294-12306.	5.6	127
9	A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale, 2015, 7, 14766-14773.	5.6	126
10	An enhanced mesomodel for laminates based on micromechanics. Composites Science and Technology, 2002, 62, 533-541.	7.8	123
11	Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT/PSS Coated MWCNTs. ACS Applied Materials & amp; Interfaces, 2013, 5, 6189-6200.	8.0	123
12	A morphing approach to couple state-based peridynamics with classical continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 301, 336-358.	6.6	121
13	On a damage mesomodel for laminates. Composites Science and Technology, 2001, 61, 2149-2158.	7.8	120
14	Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard. Computational Materials Science, 2008, 43, 137-145.	3.0	109
15	High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators. Journal of Materials Chemistry C, 2016, 4, 1238-1249.	5.5	100
16	Towards a bridge between the micro- and mesomechanics of delamination for laminated composites. Composites Science and Technology, 2006, 66, 698-712.	7.8	98
17	Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure. Journal of the Mechanics and Physics of Solids, 2016, 94, 453-472.	4.8	92
18	Coupling of nonlocal and local continuum models by the Arlequin approach. International Journal for Numerical Methods in Engineering, 2012, 89, 671-685.	2.8	91

#	Article	IF	CITATIONS
19	Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes. Materials & Design, 2014, 53, 921-927.	5.1	89
20	Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture. Composites Part A: Applied Science and Manufacturing, 2016, 90, 577-588.	7.6	89
21	Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale, 2017, 9, 604-612.	5.6	78
22	Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability. Carbon, 2014, 80, 91-102.	10.3	76
23	Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale, 2017, 9, 10897-10905.	5.6	75
24	Identification of the parameters of an elastic material model using the constitutive equation gap method. Computational Mechanics, 2010, 46, 521-531.	4.0	73
25	On a damage mesomodel for laminates: micromechanics basis and improvement. Mechanics of Materials, 2003, 35, 763-775.	3.2	68
26	A Morphing framework to couple non-local and local anisotropic continua. International Journal of Solids and Structures, 2013, 50, 1332-1341.	2.7	68
27	A fully coupled diffusion-reaction scheme for moisture sorption–desorption in an anhydride-cured epoxy resin. Polymer, 2012, 53, 5582-5595.	3.8	67
28	Lightâ€Activated Rapidâ€Response Polyvinylideneâ€Fluorideâ€Based Flexible Films. Advanced Materials, 2016, 28 4665-4670.	⁹ , 21.0	66
29	Laser-based surface patterning of composite plates for improved secondary adhesive bonding. Composites Part A: Applied Science and Manufacturing, 2018, 109, 84-94.	7.6	66
30	Doubleâ€Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradientâ€Coated Thread for Multidimensional Flexible Pressureâ€Sensing Devices. Advanced Functional Materials, 2016, 26, 4078-4084.	14.9	65
31	An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines. International Journal of Hydrogen Energy, 2012, 37, 16214-16230.	7.1	64
32	Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics. International Journal of Solids and Structures, 2015, 55, 79-91.	2.7	64
33	The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture. Computational Mechanics, 2014, 54, 711-722.	4.0	58
34	Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites. Carbon, 2015, 81, 720-730.	10.3	57
35	Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension. Composites Part A: Applied Science and Manufacturing, 2015, 71, 17-31.	7.6	56
36	Effect of Al2O3 particles on mechanical and tribological properties of Al–Mg dual-matrix nanocomposites. Ceramics International, 2020, 46, 5779-5787.	4.8	56

#	Article	IF	CITATIONS
37	Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites. Composite Structures, 2020, 239, 112022.	5.8	56
38	A Pyramidal Modeling Scheme for Laminates - Identification of Transverse Cracking. International Journal of Damage Mechanics, 2010, 19, 499-518.	4.2	55
39	An efficient and accurate 3D displacements tracking strategy for digital volume correlation. Optics and Lasers in Engineering, 2014, 58, 126-135.	3.8	54
40	Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils. Materials Letters, 2013, 109, 175-178.	2.6	53
41	Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints. International Journal of Adhesion and Adhesives, 2012, 39, 33-41.	2.9	51
42	Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings. Composites Science and Technology, 2016, 123, 143-150.	7.8	51
43	Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool. International Journal of Solids and Structures, 2017, 117, 177-190.	2.7	51
44	Recent advancements in mechanical characterisation of 3D woven composites. Mechanics of Advanced Materials and Modern Processes, 2017, 3, .	2.2	51
45	Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. Journal of Visualization, 2016, 19, 691-713.	1.8	48
46	A Computational Damage Micromodel of Laminated Composites. International Journal of Fracture, 2006, 137, 139-150.	2.2	47
47	Unraveling the Order and Disorder in Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) Nanofilms. Macromolecules, 2015, 48, 5688-5696.	4.8	46
48	Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun) Tj ETQq0 0 0	rgBT ₃ /Over	lock 10 Tf 50
49	Distributed internal strain measurement during composite manufacturing using optical fibre sensors. Composites Science and Technology, 2015, 120, 49-57.	7.8	45
50	In situ analysis of interfacial damage in adhesively bonded composite joints subjected to various surface pretreatments. Composites Part A: Applied Science and Manufacturing, 2019, 116, 216-223.	7.6	45
51	The constitutive compatibility method for identification of material parameters based on full-field measurements. Computer Methods in Applied Mechanics and Engineering, 2013, 265, 1-14.	6.6	44
52	Durability of CFRP laminates under thermomechanical loading: A micro–meso damage model. Composites Science and Technology, 2006, 66, 983-992.	7.8	43
53	Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling. Computational Materials Science, 2014, 81, 641-651.	3.0	40

54Humanâ€Finger Electronics Based on Opposing Humidityâ€Resistance Responses in Carbon Nanofilms.
Small, 2017, 13, 1603486.10.040

#	Article	IF	CITATIONS
55	Buckled Conductive Polymer Ribbons in Elastomer Channels as Stretchable Fiber Conductor. Advanced Functional Materials, 2020, 30, 1907316.	14.9	40
56	Global sensitivity analysis in the identification of cohesive models using full-field kinematic data. International Journal of Solids and Structures, 2015, 55, 66-78.	2.7	39
57	Making a Bilateral Compression/Tension Sensor by Pre-Stretching Open-Crack Networks in Carbon Nanotube Papers. ACS Applied Materials & Interfaces, 2018, 10, 33507-33515.	8.0	39
58	Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites. Results in Physics, 2018, 10, 81-90.	4.1	39
59	Micromodel-based simulations for laminated composites. Composites Science and Technology, 2009, 69, 1364-1371.	7.8	38
60	A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. Journal of Materials Chemistry A, 2019, 7, 24493-24501.	10.3	38
61	On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets. International Journal of Solids and Structures, 2020, 198, 31-40.	2.7	38
62	Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106443.	7.6	38
63	Micro-mechanics based damage mechanics for 3D orthogonal woven composites: Experiment and numerical modelling. Composite Structures, 2016, 156, 115-124.	5.8	37
64	Drastic modification of the piezoresistive behavior of polymer nanocomposites by using conductive polymer coatings. Composites Science and Technology, 2015, 117, 342-350.	7.8	36
65	Principles and Applications of Microwave Testing for Woven and Non-Woven Carbon Fibre-Reinforced Polymer Composites: a Topical Review. Applied Composite Materials, 2018, 25, 965-982.	2.5	35
66	Probing the Role of Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate)-Coated Multiwalled Carbon Nanotubes in the Thermal and Mechanical Properties of Polycarbonate Nanocomposites. Industrial & Engineering Chemistry Research, 2014, 53, 3539-3549.	3.7	34
67	Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging. Composites Part A: Applied Science and Manufacturing, 2015, 68, 184-192.	7.6	34
68	A morphological investigation of conductive networks in polymers loaded with carbon nanotubes. Computational Materials Science, 2017, 130, 21-38.	3.0	34
69	Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation. Experimental Mechanics, 2015, 55, 887-901.	2.0	33
70	Space-time tomography for continuously deforming objects. ACM Transactions on Graphics, 2018, 37, 1-14.	7.2	33
71	Strength-induced peridynamic modeling and simulation of fractures in brittle materials. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113558.	6.6	33
72	On the enhancement of bond toughness for Al/epoxy T-peel joints with laser treated substrates. International Journal of Fracture, 2011, 171, 139-150.	2.2	32

#	Article	IF	CITATIONS
73	Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation. Solar Energy Materials and Solar Cells, 2014, 130, 199-207.	6.2	31
74	Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP). Composites Part A: Applied Science and Manufacturing, 2016, 91, 41-52.	7.6	31
75	Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates. Composite Structures, 2017, 168, 510-521.	5.8	31
76	Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation. Materials and Design, 2018, 137, 305-315.	7.0	31
77	Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation. Composite Structures, 2018, 186, 324-334.	5.8	31
78	Revealing the effects of matrix behavior on low-velocity impact response of continuous fiber-reinforced thermoplastic laminates. Composite Structures, 2019, 210, 239-249.	5.8	31
79	Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors. Scientific Reports, 2017, 7, 4317.	3.3	30
80	Inkjet-printed Ti ₃ C ₂ T _x MXene electrodes for multimodal cutaneous biosensing. JPhys Materials, 2020, 3, 044004.	4.2	30
81	Response of fiber Bragg gratings bonded on a glass/epoxy laminate subjected to static loadings. Composite Structures, 2015, 130, 75-84.	5.8	29
82	Effect of camera temperature variations on stereo-digital image correlation measurements. Applied Optics, 2015, 54, 10089.	2.1	29
83	A Dissipation Gap Method for fullâ€field measurementâ€based identification of elastoâ€plastic material parameters. International Journal for Numerical Methods in Engineering, 2012, 91, 685-704.	2.8	28
84	On controlling interfacial heterogeneity to trigger bridging in secondary bonded composite joints: An efficient strategy to introduce crack-arrest features. Composites Science and Technology, 2020, 188, 107964.	7.8	28
85	Improving adhesion of copper/epoxy joints by pulsed laser ablation. International Journal of Adhesion and Adhesives, 2016, 64, 23-32.	2.9	27
86	Impact and post-impact response of lightweight CFRP/wood sandwich composites. Composite Structures, 2022, 279, 114766.	5.8	27
87	A goal-oriented field measurement filtering technique for the identification of material model parameters. Computational Mechanics, 2009, 44, 591-603.	4.0	26
88	The thermal properties of a carbon nanotubeâ€enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130, 2722-2733.	2.6	26
89	Characterizing the toughness of an epoxy resin after wet aging using compact tension specimens with non-uniform moisture content. Polymer Degradation and Stability, 2014, 109, 319-326.	5.8	26
90	Thermomechanical and hygroelastic properties of an epoxy system under humid and cold-warm cycling conditions. Polymer Degradation and Stability, 2014, 99, 146-155.	5.8	26

#	Article	IF	CITATIONS
91	On the detectability of transverse cracks in laminated composites using electrical potential change measurements. Composite Structures, 2015, 121, 237-246.	5.8	26
92	Bio-inspired composite laminate design with improved out-of-plane strength and ductility. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106362.	7.6	26
93	Estimation of residual stresses in laminated composites using field measurements on a cracked sample. Composites Science and Technology, 2008, 68, 2761-2769.	7.8	25
94	Illustrations of a microdamage model for laminates under oxidizing thermal cycling. Composites Science and Technology, 2009, 69, 3-9.	7.8	25
95	Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure. Composite Structures, 2014, 109, 178-188.	5.8	25
96	Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes. Nanoscale Research Letters, 2015, 10, 485.	5.7	25
97	Enhancement of fracture toughness in secondary bonded CFRP using hybrid thermoplastic/thermoset bondline architecture. Composites Science and Technology, 2020, 199, 108346.	7.8	25
98	Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2022, 7, 827-833.	17.4	25
99	Using Image Gradients to Improve Robustness of Digital Image Correlation to Non-uniform Illumination: Effects of Weighting and Normalization Choices. Experimental Mechanics, 2015, 55, 963-979.	2.0	24
100	Emergent Protective Organogenesis in Date Palms: A Morpho-Devo-Dynamic Adaptive Strategy during Early Development. Plant Cell, 2019, 31, 1751-1766.	6.6	24
101	Improving mode II fracture toughness of secondary bonded joints using laser patterning of adherends. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105892.	7.6	24
102	Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling. Computational Materials Science, 2014, 81, 652-661.	3.0	23
103	Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device. Scientific Reports, 2016, 6, 19632.	3.3	23
104	The effect of z-binding yarns on the electrical properties of 3D woven composites. Composite Structures, 2017, 182, 606-616.	5.8	23
105	Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications. Applied Composite Materials, 2017, 24, 377-396.	2.5	23
106	Laser-based interfacial patterning enables toughening of CFRP/epoxy joints through bridging of adhesive ligaments. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106094.	7.6	22
107	Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates. Polymer Testing, 2016, 51, 93-100.	4.8	21
108	Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition. Soft Robotics, 2020, 7, 688-699.	8.0	21

#	Article	IF	CITATIONS
109	Bio-inspired adhesive joint with improved interlaminar fracture toughness. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106530.	7.6	21
110	Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation. Optics and Lasers in Engineering, 2016, 82, 148-158.	3.8	20
111	Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities. Scientific Reports, 2017, 7, 16344.	3.3	20
112	Enhanced mode II fracture toughness of secondary bonded joints using tailored sacrificial cracks inside the adhesive. Composites Science and Technology, 2021, 204, 108605.	7.8	20
113	On the impact damage resistance and tolerance improvement of hybrid CFRP/Kevlar sandwich composites. Microporous and Mesoporous Materials, 2022, 333, 111732.	4.4	20
114	Peridynamics for analysis of failure in advanced composite materials. , 2015, , 331-350.		19
115	Magneto-dependent stress relaxation of magnetorheological gels. Smart Materials and Structures, 2017, 26, 115005.	3.5	19
116	Computational modeling of electrically conductive networks formed by graphene nanoplatelet–carbon nanotube hybrid particles. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 035010.	2.0	19
117	Accurate 3D Shape, Displacement and Deformation Measurement Using a Smartphone. Sensors, 2019, 19, 719.	3.8	19
118	Aerospace engineering requirements in building with composites. , 2020, , 3-22.		19
119	A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling. Journal of Electrical Bioimpedance, 2019, 7, 35-54.	0.9	19
120	Hybrid 2D–3D modelling of GTA welding with filler wire addition. International Journal of Heat and Mass Transfer, 2012, 55, 3946-3963.	4.8	18
121	An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates. Composite Structures, 2013, 106, 529-536.	5.8	18
122	Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements. Applied Surface Science, 2015, 359, 388-397.	6.1	18
123	Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors. Nanoscale, 2017, 9, 7888-7894.	5.6	18
124	Computational Investigation of the Morphology, Efficiency, and Properties of Silver Nano Wires Networks in Transparent Conductive Film. Scientific Reports, 2018, 8, 17494.	3.3	18
125	Copolymer-enabled stretchable conductive polymer fibers. Polymer, 2019, 177, 189-195.	3.8	18
126	Characterizing and modeling the pressure- and rate-dependent elastic-plastic-damage behavior of polypropylene-based polymers. Polymer Testing, 2018, 68, 433-445.	4.8	17

#	Article	IF	CITATIONS
127	Strain Sensing by Electrical Capacitive Variation: From Stretchable Materials to Electronic Interfaces. Advanced Electronic Materials, 2021, 7, 2100190.	5.1	17
128	Polymer metallization via cold spray additive manufacturing: A review of process control, coating qualities, and prospective applications. Additive Manufacturing, 2021, 48, 102459.	3.0	17
129	Some practical considerations in finite element-based digital image correlation. Optics and Lasers in Engineering, 2015, 73, 22-32.	3.8	16
130	Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission. Materials, 2016, 9, 699.	2.9	16
131	Preparation of water-soluble graphene nanoplatelets and highly conductive films. Carbon, 2017, 124, 133-141.	10.3	16
132	Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations. International Journal on Interactive Design and Manufacturing, 2011, 5, 227-234.	2.2	15
133	Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model. Procedia Engineering, 2011, 10, 1760-1765.	1.2	15
134	A Sandwiched/Cracked Flexible Film for Multithermal Monitoring and Switching Devices. ACS Applied Materials & Interfaces, 2017, 9, 32184-32191.	8.0	15
135	Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiber-reinforced polypropylene. Composites Science and Technology, 2019, 170, 183-189.	7.8	15
136	A dynamic hybrid local/nonlocal continuum model for wave propagation. Computational Mechanics, 2021, 67, 385-407.	4.0	15
137	Real-time electrical impedance monitoring of carbon fiber-reinforced polymer laminates undergoing quasi-static indentation. Composite Structures, 2019, 207, 255-263.	5.8	14
138	A smartphone camera and built-in gyroscope based application for non-contact yet accurate off-axis structural displacement measurements. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108449.	5.0	14
139	Fatigue crack growth in laser-treated adhesively bonded composite joints: An experimental examination. International Journal of Adhesion and Adhesives, 2021, 105, 102784.	2.9	14
140	Robust, Longâ€Term, and Exceptionally Sensitive Microneedleâ€Based Bioimpedance Sensor for Precision Farming. Advanced Science, 2021, 8, e2101261.	11.2	14
141	On micro–meso relations homogenizing electrical properties of transversely cracked laminated composites. Composite Structures, 2013, 105, 66-74.	5.8	13
142	The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites. Composites Science and Technology, 2013, 84, 23-30.	7.8	13
143	Combining the converse humidity/resistance response behaviors of rGO films for flexible logic devices. Journal of Materials Chemistry C, 2017, 5, 3848-3854.	5.5	13
144	Internal strain assessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact. Composite Structures, 2019, 215, 305-316.	5.8	13

#	Article	IF	CITATIONS
145	Macroscopic Modeling of Water Uptake Behavior of PEDOT:PSS Films. ACS Omega, 2019, 4, 21883-21890.	3.5	13
146	Volume digital image correlation to assess displacement field in compression loaded bread crumb under X-ray microtomography. Innovative Food Science and Emerging Technologies, 2014, 25, 78-87.	5.6	12
147	Development of Low-Cost DDGS-Based Activated Carbons and Their Applications in Environmental Remediation and High-Performance Electrodes for Supercapacitors. Journal of Polymers and the Environment, 2015, 23, 595-605.	5.0	12
148	Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner. Measurement Science and Technology, 2017, 28, 055402.	2.6	12
149	An experimental study on the influence of intralaminar damage on interlaminar delamination properties of laminated composites. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105783.	7.6	12
150	Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: Mode-I and in-situ SEM fracture characterisation. International Journal of Lightweight Materials and Manufacture, 2021, 4, 50-61.	2.1	12
151	Achieving Super Sensitivity in Capacitive Strain Sensing by Electrode Fragmentation. ACS Applied Materials & Interfaces, 2021, 13, 36062-36070.	8.0	12
152	Thermal conductivity and stability of a threeâ€phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
153	"Selfâ€Peelâ€Off―Transfer Produces Ultrathin Polyvinylideneâ€Fluorideâ€Based Flexible Nanodevices. Advanced Science, 2017, 4, 1600370.	11.2	11
154	Modeling of systematic errors in stereo-digital image correlation due to camera self-heating. Scientific Reports, 2019, 9, 6567.	3.3	11
155	How variability in interfacial properties results in tougher bonded composite joints by triggering bridging. International Journal of Solids and Structures, 2020, 191-192, 87-98.	2.7	11
156	A Hybrid Local/Nonlocal Continuum Mechanics Modeling and Simulation of Fracture in Brittle Materials. CMES - Computer Modeling in Engineering and Sciences, 2019, 121, 399-423.	1.1	11
157	Temperature sensing of micron scale polymer fibers using fiber Bragg gratings. Measurement Science and Technology, 2015, 26, 085003.	2.6	10
158	A synergetic layered inorganic–organic hybrid film for conductive, flexible, and transparent electrodes. Npj Flexible Electronics, 2019, 3, .	10.7	10
159	Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints. Materials, 2021, 14, 1512.	2.9	10
160	Effect of actual surface area on adhesion strength of copper electroplated on ABS plastic micro-textured by hot embossing. Procedia CIRP, 2022, 108, 210-215.	1.9	10
161	An experimental approach that assesses in-situ micro-scale damage mechanisms and fracture toughness in thermoplastic laminates under out-of-plane loading. Composite Structures, 2019, 207, 546-559.	5.8	9
162	Influence of curing processes on the development of fiber bridging during delamination in composite laminates. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106564.	7.6	9

#	Article	IF	CITATIONS
163	Large-scale hot embossing of 1µm high-aspect-ratio textures on ABS polymer. CIRP Journal of Manufacturing Science and Technology, 2022, 38, 340-349.	4.5	9
164	Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation. Optics and Lasers in Engineering, 2016, 81, 103-112.	3.8	8
165	Hysteresis in the relation between moisture uptake and electrical conductivity in neat epoxy. Polymer Degradation and Stability, 2017, 141, 54-57.	5.8	8
166	In situ micro-scale high-speed imaging for evaluation of fracture propagation and fracture toughness of thermoplastic laminates subjected to impact. Composite Structures, 2019, 210, 747-754.	5.8	8
167	On the anisotropic behavior of electrodes for electricalâ€based monitoring of CFRP laminated composites. Polymer Composites, 2019, 40, 2061-2066.	4.6	8
168	An enriched cohesive law using plane-part of interfacial strains to model intra/inter laminar coupling in laminated composites. Composites Science and Technology, 2020, 200, 108460.	7.8	8
169	How the spatial correlation in adhesion properties influences the performance of secondary bonding of laminated composites. International Journal of Solids and Structures, 2020, 196-197, 41-52.	2.7	8
170	Toughening adhesive joints through crack path engineering using integrated polyamide wires. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106954.	7.6	8
171	The global equilibrium method and its hybrid implementation for identifying heterogeneous elastic material parameters. Computers and Structures, 2011, 89, 656-667.	4.4	7
172	A domain decomposition approach for full-field measurements based identification of local elastic parameters. International Journal of Solids and Structures, 2015, 55, 44-57.	2.7	7
173	In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample. Experimental Mechanics, 2018, 58, 427-436.	2.0	7
174	Laser-based pretreatment of composite T-joints for improved pull-off strength and toughness. Composite Structures, 2022, 291, 115545.	5.8	7
175	Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression. Composites Science and Technology, 2018, 162, 188-197.	7.8	6
176	Toward Programmable Materials for Wearable Electronics: Electrical Welding Turns Sensors into Conductors. Advanced Electronic Materials, 2019, 5, 1800273.	5.1	6
177	Sodium Hypochlorite and Sodium Bromide Individualized and Stabilized Carbon Nanotubes in Water. Langmuir, 2017, 33, 10868-10876.	3.5	5
178	Snap-back instability of double cantilever beam with bridging. International Journal of Solids and Structures, 2021, 233, 111150.	2.7	5
179	A Stretchable Fiber with Tunable Stiffness for Programmable Shape Change of Soft Robots. Soft Robotics, 2022, 9, 1052-1061.	8.0	5
180	Laser ablation of CFRP surfaces for improving the strength of bonded scarf composite joints. Composite Structures, 2022, 296, 115881.	5.8	5

#	Article	IF	CITATIONS
181	A computational mesodamage model for life prediction for laminates. , 2003, , 432-441.		4
182	Towards a Micromechanics-Based Damage Mesomodel for CFRP Laminates under Thermomechanical Cyclic Loading. Science and Engineering of Composite Materials, 2005, 12, 71-82.	1.4	4
183	Model of Parameters Controlling Resistance of Pipeline Steels to Hydrogen-Induced Cracking. Corrosion, 2014, 70, 87-94.	1.1	4
184	All-polymer based polymorph skin with controllable surface texture. Smart Materials and Structures, 2019, 28, 075011.	3.5	4
185	Smartphone-Based Single-Camera Stereo-DIC System: Thermal Error Analysis and Design Recommendations. IEEE Sensors Journal, 2021, 21, 9567-9576.	4.7	4
186	3D Imaging Using X-Ray Tomography and SEM Combined FIB to Study Non Isothermal Creep Damage of (111) Oriented Samples of γ / I³ ' Nickel Base Single Crystal Superalloy MC2. Materials Science Forum, 0, 706-709, 2400-2405.	0.3	3
187	Une approche en dissipation pour l'identification de propriétés matériaux hétérogènes à partir de mesures de champs. Materiaux Et Techniques, 2012, 100, 665-670.	² 0.9	3
188	Cassette-like peeling system for testing the adhesion of soft-to-rigid assemblies. International Journal of Solids and Structures, 2022, 251, 111751.	2.7	3
189	Cyclic hygrothermal aging of aircraft lightning protections: phenomenological overview. , 2012, , .		2
190	A 3D domain decomposition approach for the identification of spatially varying elastic material parameters. International Journal for Numerical Methods in Engineering, 2015, 102, 1431-1448.	2.8	2
191	Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements. Sensors, 2016, 16, 427.	3.8	2
192	High stability of few layer graphene nanoplatelets in various solvents. IOP Conference Series: Materials Science and Engineering, 2017, 191, 012015.	0.6	2
193	Characterizing and modeling the progressive damage of off-axis thermoplastic plies: Effect of ply confinement. Composite Structures, 2020, 246, 112397.	5.8	2
194	Nanocomposite sensors for smart textile composites. , 2021, , 55-81.		2
195	A COMPUTATIONAL DAMAGE MICROMODEL FOR LAMINATE COMPOSITES. , 2006, , 1-12.		2
196	Rate-dependent viscoelasticity of an impact-hardening polymer under oscillatory shear. Materials Research Express, 2020, 7, 075701.	1.6	2
197	Evolution of the Seebeck effect in nanoparticle-percolated networks under applied strain. Applied Materials Today, 2022, 28, 101503.	4.3	2
198	Flexural Behaviour of Unreinforced and Z-Fibre Reinforced 3D Carbon/Epoxy Composites. Applied Composite Materials, 0, , 1.	2.5	1

#	Article	IF	CITATIONS
199	ON THE OUT-OF-PLANE INTERACTIONS BETWEEN PLY DAMAGE AND INTERFACE DAMAGE IN LAMINATES. , 2006, , 97-104.		1
200	A Pyramidal Damage Modelling for Laminates Composites - Illustrations Using Abaqus , 2008, , .		0
201	Experimental investigation of cyclic hygrothermal aging of aircraft lightning protection. , 2013, , .		0
202	Towards mechanisms-guided resistivity-based monitoring of damage in laminated composites. , 2013, , .		0
203	Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy. Applied Mechanics and Materials, 0, 784, 435-442.	0.2	0
204	Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device. MRS Advances, 2016, 1, 3533-3538.	0.9	0
205	Robust method for identifying material parameters based on virtual fields in elastodynamics. Computers and Mathematics With Applications, 2019, 77, 3021-3042.	2.7	0
206	Encounting for Intra/Interlaminar Coupling by Using both In-Plane and Out-of-Plane Strains in an Hybrid Interface Model. , 0, , .		0
207	Homogénéisation à l'échelle méso des propriétés électriques de milieux fissurés. Application a composites stratifiés et à l'électronique flexible. Revue Des Composites Et Des Materiaux Avances, 2014, 24, 25-38.	ux 0.6	0
208	Suivi de la fabrication de stratifiés verrepolypropylène par réseaux de Bragg et du comportement thermomécanique induit. Revue Des Composites Et Des Materiaux Avances, 2018, 28, 55-73.	0.6	0