
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5922667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2014, 3, 26913.	12.2	2,110
2	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
3	Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. International Journal of Molecular Medicine, 2014, 33, 1055-1063.	4.0	277
4	AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. Journal of the American Society of Nephrology: JASN, 2015, 26, 2349-2360.	6.1	212
5	Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110, 319-330.	3.8	196
6	Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Experimental Hematology, 2010, 38, 233-245.	0.4	186
7	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	12.2	185
8	Alteration of Marrow Cell Gene Expression, Protein Production, and Engraftment into Lung by Lung-Derived Microvesicles: A Novel Mechanism for Phenotype Modulation. Stem Cells, 2007, 25, 2245-2256.	3.2	169
9	Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Research and Therapy, 2015, 6, 153.	5.5	164
10	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	3.1	159
11	Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells. Stem Cell Reviews and Reports, 2017, 13, 226-243.	5.6	129
12	Cellular phenotype switching and microvesicles. Advanced Drug Delivery Reviews, 2010, 62, 1141-1148.	13.7	116
13	Role of Alix in miRNA packaging during extracellular vesicle biogenesis. International Journal of Molecular Medicine, 2016, 37, 958-966.	4.0	115
14	The Paradoxical Dynamism of Marrow Stem Cells: Considerations of Stem Cells, Niches, and Microvesicles. Stem Cell Reviews and Reports, 2008, 4, 137-147.	5.6	90
15	Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles. Experimental Hematology, 2010, 38, 581-592.	0.4	90
16	Cellular Phenotype and Extracellular Vesicles: Basic and Clinical Considerations. Stem Cells and Development, 2014, 23, 1429-1436.	2.1	70
17	Induction of pulmonary hypertensive changes by extracellular vesicles from monocrotaline-treated mice. Cardiovascular Research, 2013, 100, 354-362.	3.8	65
18	Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 577-587.	2.9	54

#	Article	IF	CITATIONS
19	The Stem Cell Continuum. Annals of the New York Academy of Sciences, 2007, 1106, 20-29.	3.8	44
20	Progenitor/Stem Cell Fate Determination: Interactive Dynamics of Cell Cycle and Microvesicles. Stem Cells and Development, 2012, 21, 1627-1638.	2.1	43
21	Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. International Journal of Molecular Sciences, 2019, 20, 5468.	4.1	42
22	Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. Journal of Cellular Physiology, 2019, 234, 14377-14388.	4.1	41
23	Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 2381.	4.1	40
24	Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Frontiers in Cell and Developmental Biology, 2020, 8, 188.	3.7	40
25	Extracellular vesicles in leukemia. Leukemia Research, 2018, 64, 52-60.	0.8	38
26	Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27575.	12.2	28
27	Stem cells and extracellular vesicles: biological regulators of physiology and disease. American Journal of Physiology - Cell Physiology, 2019, 317, C155-C166.	4.6	27
28	Calpain inhibition decreases myocardial apoptosis in a swine model of chronic myocardial ischemia. Surgery, 2015, 158, 445-452.	1.9	25
29	Concise Reviews: A Stem Cell Apostasy: A Tale of Four H Words. Stem Cells, 2015, 33, 15-20.	3.2	25
30	Lungâ€derived exosome uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. Journal of Extracellular Vesicles, 2015, 4, 26166.	12.2	23
31	Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Translational Medicine, 2017, 6, 1595-1606.	3.3	21
32	Perspectives on the Potential Therapeutic Uses of Vesicles. Exosomes and Microvesicles, 2013, 1, 1.	1.9	20
33	Bone marrow–specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood, 2018, 132, 2053-2066.	1.4	20
34	Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and are Not Defined by Standard Purification Approaches; Then There are the Microvesicles. Frontiers in Oncology, 2014, 4, 56.	2.8	17
35	Clonal haematopoiesis of indeterminate potential among cancer survivors exposed to myelotoxic chemotherapy. British Journal of Haematology, 2019, 186, e31-e35.	2.5	17
36	Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells. Journal of Cellular Physiology, 2020, 235, 8210-8223.	4.1	17

#	Article	IF	CITATIONS
37	Inflammation-related gene expression profiles of salivary extracellular vesicles in patients with head trauma. Neural Regeneration Research, 2020, 15, 676.	3.0	17
38	Marrow Cell Infusion Attenuates Vascular Remodeling in a Murine Model of Monocrotaline-Induced Pulmonary Hypertension. Stem Cells and Development, 2009, 18, 773-781.	2.1	16
39	Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 3211-3224.	3.8	16
40	Journal of extracellular vesicles: the seven year itch!. Journal of Extracellular Vesicles, 2019, 8, 1654729.	12.2	15
41	Extracellular Vesicle-Mediated Reversal of Paclitaxel Resistance in Prostate Cancer. Critical Reviews in Oncogenesis, 2015, 20, 407-417.	0.4	13
42	The role of salivary vesicles as a potential inflammatory biomarker to detect traumatic brain injury in mixed martial artists. Scientific Reports, 2021, 11, 8186.	3.3	12
43	Prevalence and Effect on Survival of Pulmonary Hypertension in Myelofibrosis. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 593-597.	0.4	10
44	Daily rhythms influence the ability of lung-derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS ONE, 2018, 13, e0207444.	2.5	9
45	Low dose 100 cGy irradiation as a potential therapy for pulmonary hypertension. Journal of Cellular Physiology, 2019, 234, 21193-21198.	4.1	9
46	Sexual dimorphism in aging hematopoiesis: an earlier decline of hematopoietic stem and progenitor cells in male than female mice. Aging, 2020, 12, 25939-25955.	3.1	8
47	A New Stem Cell Biology: Transplantation and Baseline, Cell Cycle and Exosomes. Advances in Experimental Medicine and Biology, 2018, 1056, 3-9.	1.6	7
48	Problems in the promised land: Status of adult marrow stem cell biology. Experimental Hematology, 2009, 37, 775-783.	0.4	6
49	Marrow Hypocellularity, But Not Residual Blast Count or Receipt of Reinduction Chemotherapy, Is Prognostic on Day-14 Assessment in Acute Myeloid Leukemia Patients With Morphologic Residual Disease. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 204-209.	0.4	6
50	Stem Cell Reviews and Reports: Cancer Stem Cells and Aging Section. Stem Cell Reviews and Reports, 2017, 13, 6-6.	5.6	3
51	Effect of dose, dosing intervals, and hypoxic stress on the reversal of pulmonary hypertension by mesenchymal stem cell extracellular vesicles. Pulmonary Circulation, 2021, 11, 1-11.	1.7	3
52	Mesenchymal Stem Cell-Derived Vesicles Reverse Hematopoietic Radiation Damage. Blood, 2013, 122, 2459-2459.	1.4	3
53	Endothelial Progenitor Cells Are the Bone Marrow Cell Population in Mice with Monocrotaline-Induced Pulmonary Hypertension Which Induce Pulmonary Hypertension in Healthy Mice. Blood, 2015, 126, 3455-3455.	1.4	3
54	International Society for Extracellular Vesicles: Second Annual Meeting, 17–20 April 2013, Boston, MA (ISEV 2013). Journal of Extracellular Vesicles, 2013, 2, 23070.	12.2	2

#	Article	IF	CITATIONS
55	Polarization of neutrophil granules — A characteristic of inflammatory states. Blood Cells, Molecules, and Diseases, 2018, 69, 74.	1.4	2
56	Heuristic bias in stem cell biology. Stem Cell Research and Therapy, 2019, 10, 241.	5.5	2
57	Neutrophil Platelet Satellitism Revisited: Sidedness and Domain of Neutrophil Associated Platelet Aggregates Blood, 2009, 114, 4469-4469.	1.4	2
58	Differentiation Epitopes Define Hematopoietic Stem Cells and Change with Cell Cycle Passage. Stem Cell Reviews and Reports, 2022, 18, 2351-2364.	3.8	2
59	An interesting fishing expedition. Cancer Biology and Therapy, 2009, 8, 338-339.	3.4	1
60	Low microchimeric cell density in tumors suggests alternative antineoplastic mechanism. Medical Oncology, 2017, 34, 65.	2.5	1
61	Levels of Osteopontin (SPP1), Osteonectin (SPARC) and Biglycan (BGN) in Acute Myeloid Leukemia Bone Marrow Biopsies Post-Induction Therapy Define the Status of Osteogenic Niche and Show Inverse Correlation with Therapeutic Response. Blood, 2020, 136, 29-30.	1.4	1
62	Reversal of Radiation Damage to Marrow Stem Cells By Mesenchymal Stem Cell Derived Vesicles. Blood, 2014, 124, 5118-5118.	1.4	1
63	Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing wave technology Journal of Clinical Oncology, 2013, 31, e14637-e14637.	1.6	1
64	Differentiation Profiling of Marrow Stem Cells: A Megakaryocytic Hotspot and the Continuum Model of Hematopoiesis. Blood, 2008, 112, 4776-4776.	1.4	1
65	Age-Associated Changes in Bone Marrow-Derived Extracellular Vesicles May Alter Their Effects on Murine Hematopoietic Stem Cell Function. Blood, 2020, 136, 37-37.	1.4	1
66	Cellular Immunotherapy: Using Alloreactivity to Induce Anti-Leukemic Responses without Prolonged Persistence of Donor Cells. Medical Sciences (Basel, Switzerland), 2013, 1, 37-48.	2.9	0
67	Stem Cells and Extracellular Vesicles: Biological Regulators of Physiology and Disease. , 2020, , .		0
68	Differentiation Hotspots on a Cell Cycle Related Continuum Blood, 2007, 110, 3703-3703.	1.4	0
69	HLA-Haploidentical Cellular Immunotherapy Blood, 2007, 110, 3075-3075.	1.4	0
70	Non-Engraftment Haploidentical Cellular Immunotherapy for Refractory Malignancies: Tumor Responses without Chimerism. Blood, 2008, 112, 831-831.	1.4	0
71	Stem cells and the lung. FASEB Journal, 2009, 23, 186.2.	0.5	0
72	Successful Treatment of Acquired Amegakaryocytic Thrombocytopenia with Rituximab: A Case Report Blood, 2009, 114, 4223-4223.	1.4	0

#	Article	IF	CITATIONS
73	Microvesicle Mediated Genetic Phenotype Modulation Blood, 2009, 114, 4509-4509.	1.4	Ο
74	Bone Marrow Transplant Induces Pulmonary Vascular Remodeling in Mice Blood, 2009, 114, 4480-4480.	1.4	0
75	Short-Term Hematopoietic Stem Cells (ST-HSC) Have Full Long-Term Capacity with Sustained but Reduced Potential Compared with LT-HSC Blood, 2009, 114, 2550-2550.	1.4	0
76	Adhesion Protein Profile of Lung-Derived Microvesicles. Blood, 2010, 116, 4803-4803.	1.4	0
77	Lung-Derived Microvesicles Induce Stable Long-Term Epigenetic Changes In Marrow Cells. Blood, 2010, 116, 4799-4799.	1.4	Ο
78	A General Theory of Marrow Stem Cell Fate Determination. Blood, 2010, 116, 4794-4794.	1.4	0
79	Cell Fate Modulation by Microvesicles: Transcriptionally-Mediated and Long Term in Nature. Blood, 2011, 118, 4801-4801.	1.4	0
80	Transfer of Monocrotaline-Induced Pulmonary Hypertension to Healthy Mice Via Microparticles. Blood, 2012, 120, 5190-5190.	1.4	0
81	Spontaneous Remission of Chronic Lymphocytic Leukemia, Possibly More Rare Then Previously Reported?. Blood, 2012, 120, 4589-4589.	1.4	0
82	Cycling Marrow Stem Cells Are Lost with Purification Blood, 2012, 120, 2308-2308.	1.4	0
83	Extracellular vesicle-mediated reversal of taxane resistance and the malignant phenotype in prostate cancer Journal of Clinical Oncology, 2014, 32, e16028-e16028.	1.6	0
84	Intercellular Communication Between Extracellular Vesicles and Murine Marrow Cells Is Influenced By Circadian Rhythm. Blood, 2014, 124, 2924-2924.	1.4	0
85	Defining Engraftment Potential within the Lineage Positive Population in Murine Marrow. Blood, 2014, 124, 4303-4303.	1.4	0
86	Hematopoietic Stem Cell Purification Leads to Loss of a Stem Cell Population within the Lineage Positive Cellular Fraction. Blood, 2015, 126, 4756-4756.	1.4	0
87	Biological Effects of Different Extracellular Vesicles Population on Reversal of Marrow Cells Radiation Damage. Blood, 2015, 126, 3598-3598.	1.4	0
88	A Unique Neuropsychiatric Syndrome in Variant Hereditary Coproporphyria: Case Report and Review of the Literature. Journal of Hematology (Brossard, Quebec), 2017, 6, 21-24.	1.0	0
89	Long-Term Effect of Mesenchymal Stromal Cell Derived Extracellular Vesicles on the Restoration of Engraftment of Stem Cells in Radiation Exposed Mice. Blood, 2018, 132, 5102-5102.	1.4	0
90	Mesenchymal Stem Cell Derived Extracellular Vesicles Reverse Radiation-Induced Cytokine Storm. Blood, 2021, 138, 1100-1100.	1.4	0