
Yong Tae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers, 2021, 13, 364.	4.5	10
2	Theoretical Study of CO Adsorption and Activation on Orthorhombic Fe7C3(001) Surfaces for Fischer–Tropsch Synthesis Using Density Functional Theory Calculations. Energies, 2021, 14, 563.	3.1	5
3	Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence. Reaction Chemistry and Engineering, 2021, 6, 235-243.	3.7	13
4	Upcycling of waste teabags via catalytic pyrolysis in carbon dioxide over HZSM-11. Chemical Engineering Journal, 2021, 412, 128626.	12.7	25
5	Kinetic modeling of methane dehydroaromatization over a Mo2C/H-ZSM5 catalyst: Different deactivation behaviors of the Mo2C and H-ZSM5 sites. Catalysis Today, 2020, 352, 140-147.	4.4	10
6	Comparative Study of Olefin Production from CO and CO ₂ Using Na- and K-Promoted Zinc Ferrite. ACS Catalysis, 2020, 10, 10742-10759.	11.2	42
7	Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Applied Sciences (Switzerland), 2020, 10, 7506.	2.5	9
8	Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst. Communications Chemistry, 2020, 3, .	4.5	32
9	Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan. Environmental Research, 2020, 184, 109325.	7.5	28
10	Engineered rice-straw biochar catalysts for the production of value-added chemicals from furan. Chemical Engineering Journal, 2020, 387, 124194.	12.7	34
11	Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis. Chemosphere, 2020, 248, 126043.	8.2	42
12	Nonoxidative Direct Conversion of Methane on Silica-Based Iron Catalysts: Effect of Catalytic Surface. ACS Catalysis, 2019, 9, 7984-7997.	11.2	61
13	Linear α-olefin production with Na-promoted Fe–Zn catalysts <i>via</i> Fischer–Tropsch synthesis. RSC Advances, 2019, 9, 14176-14187.	3.6	27
14	Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry, 2019, 21, 3715-3743.	9.0	367
15	Non-oxidative dehydroaromatization of methane over Mo/H-ZSM-5 catalysts: A detailed analysis of the reaction-regeneration cycle. Applied Catalysis B: Environmental, 2019, 241, 305-318.	20.2	76
16	Effect of H ₂ O on Slurryâ€Phase Fischer–Tropsch Synthesis over Aluminaâ€supported Cobalt Catalysts. Bulletin of the Korean Chemical Society, 2018, 39, 540-547.	1.9	4
17	Production of renewable C4–C6 monoalcohols from waste biomass-derived carbohydrate via aqueous-phase hydrodeoxygenation over Pt-ReO /Zr-P. Chemical Engineering Research and Design, 2018, 115, 2-7.	5.6	12
18	Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts. Journal of Environmental Management, 2018, 227, 329-334.	7.8	22

Yong Tae Kim

#	Article	IF	CITATION
19	Low Temperature Oligomerization of Ethylene over Ni/Al-KIT-6 Catalysts. Catalysis Letters, 2017, 147, 1303-1314.	2.6	17
20	Production of Linear Octenes from Oligomerization of 1-Butene over Carbon-Supported Cobalt Catalysts. ACS Catalysis, 2016, 6, 3815-3825.	11.2	27
21	Low-temperature oligomerization of 1-butene with H-ferrierite. Journal of Catalysis, 2015, 323, 33-44.	6.2	66
22	Hydrothermally stable regenerable catalytic supports for aqueous-phase conversion of biomass. Catalysis Today, 2014, 234, 66-74.	4.4	30
23	Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts. Green Chemistry, 2014, 16, 708.	9.0	111
24	Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and PtReOx/C. Journal of Catalysis, 2013, 304, 72-85.	6.2	121
25	Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304, 123-134.	6.2	189
26	Gas-phase dehydration of glycerol over silica–alumina catalysts. Applied Catalysis B: Environmental, 2011, 107, 177-187.	20.2	113
27	Gas-phase dehydration of glycerol over ZSM-5 catalysts. Microporous and Mesoporous Materials, 2010, 131, 28-36.	4.4	197