
Guanjie He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920516/publications.pdf Version: 2024-02-01

CHANUE HE

#	Article	IF	CITATIONS
1	Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy and Environment, 2023, 8, 1450-1458.	8.7	4
2	Hybrid <scp>Ni₂P</scp> / <scp>CoP</scp> Nanosheets as Efficient and Robust Electrocatalysts for Domestic Wastewater Splitting. Energy and Environmental Materials, 2023, 6, .	12.8	10
3	Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS). Green Energy and Environment, 2023, 8, 989-1005.	8.7	15
4	Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy and Environment, 2022, 7, 266-274.	8.7	41
5	In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries. Science China Materials, 2022, 65, 356-363.	6.3	82
6	Progress and Perspectives of Organosulfur for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2103483.	19.5	69
7	In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1165-1175.	6.3	18
8	Electron-Deficient Au Nanoparticles Confined in Organic Molecular Cages for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2022, 5, 1276-1283.	5.0	21
9	Self-assembled carbon nanoribbons with the heteroatom doping used as ultrafast charging cathodes in zinc-ion hybrid supercapacitors. Science China Materials, 2022, 65, 1495-1502.	6.3	16
10	Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes. Energy and Environmental Science, 2022, 15, 2386-2396.	30.8	71
11	Seed-Mediated, Shape-Controlled Synthesis Methods for Platinum-Based Electrocatalysts for the Oxygen Reduction Reaction—A Mini Review. Frontiers in Chemistry, 2022, 10, 865214.	3.6	1
12	A Universal Polyiodide Regulation Using Quaternization Engineering toward High Valueâ€Added and Ultraâ€6table Zincâ€lodine Batteries. Advanced Science, 2022, 9, e2105598.	11.2	58
13	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	10.0	40
14	Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 2022, 97, 107160.	16.0	64
15	Topochemistryâ€Driven Synthesis of Transitionâ€Metal Selenides with Weakened Van Der Waals Force to Enable 3Dâ€Printed Naâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	91
16	MOF-based nanomaterials for zinc-based battery cathodes. , 2022, , 315-340.		0
17	Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multiâ€Electron Reaction for Fastâ€Charging Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	71
18	Xylem-Inspired Polyimide/MXene Aerogels with Radial Lamellar Architectures for Highly Sensitive Strain Detection and Efficient Solar Steam Generation. Nano Letters, 2022, 22, 4560-4568.	9.1	40

Guanjie He

#	Article	IF	CITATIONS
19	Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries. Journal of Power Sources, 2022, 542, 231730.	7.8	11
20	Supersaturated bridge-sulfur and vanadium co-doped MOS2 nanosheet arrays with enhanced sodium storage capability. Nano Research, 2021, 14, 74-80.	10.4	42
21	Structural engineering of cathodes for improved Zn-ion batteries. Journal of Energy Chemistry, 2021, 58, 147-155.	12.9	52
22	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	18.0	11
23	Phosphorusâ€Doped CuCo ₂ O ₄ Oxide with Partial Amorphous Phase as a Robust Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2021, 8, 135-141.	3.4	22
24	The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system. Energy and Environmental Science, 2021, 14, 3931-3937.	30.8	39
25	Constructing compatible interface between Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte and LiCoO ₂ cathode for stable cycling performances at 4.5 V. Nanoscale, 2021, 13, 7822-7830.	5.6	9
26	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	17.4	340
27	Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2021, 14, 2639-2669.	30.8	158
28	Synthesis and Kinetic Analysis of «-MnO2 Nanowires for Supercapacitor Electrode. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 149-156.	0.5	3
29	Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors. Nanotechnology, 2021, 32, 195405.	2.6	12
30	Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021). Advanced Functional Materials, 2021, 31, 2170089.	14.9	1
31	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	11.2	56
32	Insights on Flexible Zincâ€lon Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	21.0	191
33	A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chemical Engineering Journal, 2021, 410, 128418.	12.7	22
34	Facile room-temperature synthesis of cobalt sulphide for efficient oxygen evolution reaction. Multifunctional Materials, 2021, 4, 025001.	3.7	5
35	Zinc″on Batteries: Insights on Flexible Zinc″on Batteries from Lab Research to Commercialization (Adv.) Tj E	TQq110. 21.0	784314 rgBT
36	O perando lab-Based X-Ray Computed Tomography of Zn-Air Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 42-42.	0.0	0

3

#	Article	lF	CITATIONS
37	Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. Small Science, 2021, 1, 2100032.	9.9	24
38	Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. Nanotechnology, 2021, 32, 305401.	2.6	22
39	Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Applied Surface Science, 2021, 550, 149313.	6.1	33
40	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium–Sulfur Batteries. Journal of Physical Chemistry C, 2021, 125, 18604-18613.	3.1	10
41	Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions. Advanced Functional Materials, 2021, 31, 2105579.	14.9	45
42	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering, 2021, 220, 108986.	12.0	35
43	Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 129693.	12.7	35
44	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Znâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2107652.	14.9	115
45	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 793-823.	25.5	59
46	Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: A mini-review. Composites Communications, 2021, 27, 100882.	6.3	39
47	Dendrite suppression by anode polishing in zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 15355-15362.	10.3	41
48	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	14.9	102
49	Supercapacitors: History, Theory, Emerging Technologies, and Applications. , 2021, , 417-449.		2
50	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 745-754.	8.0	64
51	Enhancing the Electrochemical Performance of Sodiumâ€lon Batteries by Building Optimized NiS ₂ /NiSe ₂ Heterostructures. Small, 2021, 17, e2104186.	10.0	56
52	Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5, 2845-2903.	24.0	201
53	Engineering oxygen vacancies and surface chemical reconstruction of MOF-derived hierarchical CoO/Ni ₂ P-Co ₂ P nanosheet arrays for advanced aqueous zinc-ion batteries. Dalton Transactions, 2021, 50, 17538-17548.	3.3	8
54	Fe3S4 nanoparticles for arterial inflammation therapy: Integration of magnetic hyperthermia and photothermal treatment. Applied Materials Today, 2020, 18, 100457.	4.3	25

#	Article	IF	CITATIONS
55	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 1652-1659.	10.3	59
56	Vacancy engineering of group VI anions in NiCo2A4 (AÂ= O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochimica Acta, 2020, 333, 135515.	5.2	15
57	Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. Journal of Power Sources, 2020, 450, 227677.	7.8	42
58	Interfacial engineering of reduced graphene oxide for high-performance supercapacitor materials. Journal of Electroanalytical Chemistry, 2020, 878, 114679.	3.8	7
59	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
60	Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy and Environment, 2020, 5, 506-512.	8.7	19
61	An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22637-22644.	10.3	41
62	A universal pH range and a highly efficient Mo ₂ C-based electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 19879-19886.	10.3	50
63	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	13.8	127
64	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	2.0	18
65	In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode. Energy Storage Materials, 2020, 31, 164-171.	18.0	12
66	MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. Journal of Power Sources, 2020, 472, 228497.	7.8	33
67	Hydrogen Evolution: The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance (Adv. Sci. 12/2020). Advanced Science, 2020, 7, 2070067.	11.2	5
68	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	5.6	61
69	Multi‣cale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000058.	19.5	173
70	Refining Energy Levels in ReS ₂ Nanosheets by Lowâ€Valent Transitionâ€Metal Doping for Dualâ€Boosted Electrochemical Ammonia/Hydrogen Production. Advanced Functional Materials, 2020, 30, 1907376.	14.9	99
71	The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance. Advanced Science, 2020, 7, 1903674.	11.2	73
72	Zincâ€lon Batteries: Multiâ€Scale Investigations of Îâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€lon Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070068.	19.5	8

#	Article	IF	CITATIONS
73	Core–shell TiO ₂ @C ultralong nanotubes with enhanced adsorption of antibiotics. Journal of Materials Chemistry A, 2019, 7, 19081-19086.	10.3	53
74	Fabrication of robust superhydrophobic surfaces <i>via</i> aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures. Journal of Materials Chemistry A, 2019, 7, 17604-17612.	10.3	91
75	Hollow Cu-doped NiO microspheres as anode materials with enhanced lithium storage performance. RSC Advances, 2019, 9, 20963-20967.	3.6	37
76	Differential Phagocytosis-Based Photothermal Ablation of Inflammatory Macrophages in Atherosclerotic Disease. ACS Applied Materials & Interfaces, 2019, 11, 41009-41018.	8.0	33
77	ZIF-8-Derived Hollow Carbon for Efficient Adsorption of Antibiotics. Nanomaterials, 2019, 9, 117.	4.1	54
78	Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment. ACS Omega, 2019, 4, 1449-1459.	3.5	20
79	CuCo ₂ S ₄ nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation. Nanoscale, 2019, 11, 9733-9742.	5.6	37
80	Stabilizing a high-voltage LiNi _{0.5} Mn _{1.5} O ₄ cathode towards all solid state batteries: a Li–Al–Ti–P–O solid electrolyte nano-shell with a host material. Nanoscale, 2019, 11, 8967-8977.	5.6	57
81	One-Step Integrated Surface Modification To Build a Stable Interface on High-Voltage Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16233-16242.	8.0	44
82	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	14.6	15
83	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 827-833.	10.3	52
84	Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 2019, 17, 12-21.	18.0	135
85	A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes. Advanced Functional Materials, 2018, 28, 1705937.	14.9	138
86	Tunable Bifunctional Activity of Mn x Co3â^'x O4 Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1248-1248.	6.8	5
87	Tunable Bifunctional Activity of Mn _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1295-1304.	6.8	50
88	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	4.9	53
89	Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 19853-19862.	10.3	38
90	Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Materials, 2018, 15, 380-387.	18.0	32

#	Article	IF	CITATIONS
91	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	5.2	36
92	Sulfurâ€Deficient Bismuth Sulfide/Nitrogenâ€Doped Carbon Nanofibers as Advanced Freeâ€Standing Electrode for Asymmetric Supercapacitors. Small, 2018, 14, e1801562.	10.0	117
93	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	8.1	14
94	Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. Journal of Materials Chemistry A, 2018, 6, 17633-17641.	10.3	99
95	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
96	Battery Electrodes: A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes (Adv. Funct. Mater. 23/2018). Advanced Functional Materials, 2018, 28, 1870154.	14.9	7
97	Ultrasmall CuCo ₂ S ₄ Nanocrystals: Allâ€inâ€One Theragnosis Nanoplatform with Magnetic Resonance/Nearâ€Infrared Imaging for Efficiently Photothermal Therapy of Tumors. Advanced Functional Materials, 2017, 27, 1606218.	14.9	106
98	Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. Journal of Power Sources, 2017, 343, 76-82.	7.8	74
99	Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. Journal of Materials Chemistry A, 2017, 5, 4352-4358.	10.3	76
100	Electric field induced slanting growth of silicon nanowires with enhanced hydrophobic property. Materials Letters, 2017, 198, 8-11.	2.6	0
101	A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Liâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1604903.	14.9	22
102	In situ transmission electron microscopy study of individual nanostructures during lithiation and delithiation processes. Journal of Materials Chemistry A, 2017, 5, 20072-20094.	10.3	27
103	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	14.9	160
104	Phase and morphological control of MoO _{3â^'x} nanostructures for efficient cancer theragnosis therapy. Nanoscale, 2017, 9, 11012-11016.	5.6	45
105	Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites. Optical Materials, 2017, 72, 529-532.	3.6	6
106	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52
107	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
108	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126

#	Article	IF	CITATIONS
109	A general method for boosting the supercapacitor performance of graphitic carbon nitride/graphene hybrids. Journal of Materials Chemistry A, 2017, 5, 25545-25554.	10.3	77
110	S, Nâ€Coâ€Doped Grapheneâ€Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Advanced Science, 2017, 4, 1600214.	11.2	204
111	Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Li″on Batteries. Advanced Energy Materials, 2017, 7, 1601363.	19.5	48
112	Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state. Journal of Materials Chemistry A, 2016, 4, 14180-14186.	10.3	71
113	Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. Journal of Materials Chemistry A, 2016, 4, 12658-12666.	10.3	99
114	Synthesis and characterization of omniphobic surfaces with thermal, mechanical and chemical stability. RSC Advances, 2016, 6, 106491-106499.	3.6	17
115	Molten salt synthesis of Zn 1.8 Mn 0.2 SiO 4 luminescent materials in NaCl–ZnCl 2 eutectic salt. Ceramics International, 2016, 42, 7852-7856.	4.8	9
116	SnS nanosheets for efficient photothermal therapy. New Journal of Chemistry, 2016, 40, 4464-4467.	2.8	27
117	Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt. Materials Letters, 2016, 170, 179-182.	2.6	19
118	One pot synthesis of nickel foam supported self-assembly of NiWO ₄ and CoWO ₄ nanostructures that act as high performance electrochemical capacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 14272-14278.	10.3	167
119	Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochimica Acta, 2015, 186, 1-6.	5.2	24
120	A facile approach for the synthesis of Cu2â^'x Se nanowires and their field emission properties. Journal of Materials Science, 2014, 49, 532-537.	3.7	6
121	NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Materials Letters, 2014, 114, 40-43.	2.6	27
122	Ni(OH) ₂ /CoO/reduced graphene oxide composites with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 478-481.	10.3	68
123	In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells. Nanoscale Research Letters, 2013, 8, 106.	5.7	25
124	Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Research Letters, 2013, 8, 49.	5.7	109
125	ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A, 2013, 1, 8445.	10.3	193
126	Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8560.	10.3	250

#	Article	IF	CITATIONS
127	Uniform NiO nanoparticles used as anodes in Li-ion batteries. IOP Conference Series: Materials Science and Engineering, 0, 490, 022063.	0.6	4