Guanjie He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920516/publications.pdf

Version: 2024-02-01

41344 66911 6,988 127 49 78 citations h-index g-index papers 133 133 133 8080 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	17.4	340
2	Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8560.	10.3	250
3	S, Nâ€Coâ€Doped Grapheneâ€Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Advanced Science, 2017, 4, 1600214.	11.2	204
4	Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5, 2845-2903.	24.0	201
5	ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A, 2013, 1, 8445.	10.3	193
6	Insights on Flexible Zincâ€ion Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	21.0	191
7	Multiâ€6cale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ OCathode Materials in Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2000058.	19.5	173
8	One pot synthesis of nickel foam supported self-assembly of NiWO ₄ and CoWO ₄ nanostructures that act as high performance electrochemical capacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 14272-14278.	10.3	167
9	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	14.9	160
10	Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2021, 14, 2639-2669.	30.8	158
11	A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes. Advanced Functional Materials, 2018, 28, 1705937.	14.9	138
12	Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 2019, 17, 12-21.	18.0	135
13	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	13.8	127
14	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126
15	Sulfurâ€Deficient Bismuth Sulfide/Nitrogenâ€Doped Carbon Nanofibers as Advanced Freeâ€Standing Electrode for Asymmetric Supercapacitors. Small, 2018, 14, e1801562.	10.0	117
16	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Zn″on Batteries. Advanced Functional Materials, 2021, 31, 2107652.	14.9	115
17	Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Research Letters, 2013, 8, 49.	5.7	109
18	Ultrasmall CuCo ₂ S ₄ Nanocrystals: Allâ€inâ€One Theragnosis Nanoplatform with Magnetic Resonance/Nearâ€Infrared Imaging for Efficiently Photothermal Therapy of Tumors. Advanced Functional Materials, 2017, 27, 1606218.	14.9	106

#	Article	IF	CITATIONS
19	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	14.9	102
20	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
21	Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. Journal of Materials Chemistry A, 2016, 4, 12658-12666.	10.3	99
22	Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. Journal of Materials Chemistry A, 2018, 6, 17633-17641.	10.3	99
23	Refining Energy Levels in ReS ₂ Nanosheets by Lowâ€Valent Transitionâ€Metal Doping for Dualâ€Boosted Electrochemical Ammonia/Hydrogen Production. Advanced Functional Materials, 2020, 30, 1907376.	14.9	99
24	Fabrication of robust superhydrophobic surfaces <i>via</i> aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures. Journal of Materials Chemistry A, 2019, 7, 17604-17612.	10.3	91
25	Topochemistryâ€Driven Synthesis of Transitionâ€Metal Selenides with Weakened Van Der Waals Force to Enable 3Dâ€Printed Naâ€lon Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	91
26	In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries. Science China Materials, 2022, 65, 356-363.	6.3	82
27	A general method for boosting the supercapacitor performance of graphitic carbon nitride/graphene hybrids. Journal of Materials Chemistry A, 2017, 5, 25545-25554.	10.3	77
28	Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. Journal of Materials Chemistry A, 2017, 5, 4352-4358.	10.3	76
29	Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. Journal of Power Sources, 2017, 343, 76-82.	7.8	74
30	The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance. Advanced Science, 2020, 7, 1903674.	11.2	73
31	Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state. Journal of Materials Chemistry A, 2016, 4, 14180-14186.	10.3	71
32	Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes. Energy and Environmental Science, 2022, 15, 2386-2396.	30.8	71
33	Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multiâ€Electron Reaction for Fastâ€Charging Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	71
34	Progress and Perspectives of Organosulfur for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2103483.	19.5	69
35	Ni(OH) ₂ /CoO/reduced graphene oxide composites with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 478-481.	10.3	68
36	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 745-754.	8.0	64

#	Article	IF	CITATIONS
37	Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 2022, 97, 107160.	16.0	64
38	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	5.6	61
39	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 1652-1659.	10.3	59
40	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 793-823.	25.5	59
41	A Universal Polyiodide Regulation Using Quaternization Engineering toward High Valueâ€Added and Ultraâ€5table Zincâ€Iodine Batteries. Advanced Science, 2022, 9, e2105598.	11.2	58
42	Stabilizing a high-voltage LiNi _{0.5} Mn _{1.5} O ₄ cathode towards all solid state batteries: a Li–Al–Ti–P–O solid electrolyte nano-shell with a host material. Nanoscale, 2019, 11, 8967-8977.	5.6	57
43	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	11.2	56
44	Enhancing the Electrochemical Performance of Sodiumâ€Ion Batteries by Building Optimized NiS ₂ /NiSe ₂ Heterostructures. Small, 2021, 17, e2104186.	10.0	56
45	ZIF-8-Derived Hollow Carbon for Efficient Adsorption of Antibiotics. Nanomaterials, 2019, 9, 117.	4.1	54
46	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	4.9	53
47	Core–shell TiO ₂ @C ultralong nanotubes with enhanced adsorption of antibiotics. Journal of Materials Chemistry A, 2019, 7, 19081-19086.	10.3	53
48	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52
49	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 827-833.	10.3	52
50	Structural engineering of cathodes for improved Zn-ion batteries. Journal of Energy Chemistry, 2021, 58, 147-155.	12.9	52
51	Tunable Bifunctional Activity of Mn _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1295-1304.	6.8	50
52	A universal pH range and a highly efficient Mo ₂ C-based electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 19879-19886.	10.3	50
53	Nanoparticles Encapsulated in Porous Carbon Matrix Coated on Carbon Fibers: An Ultrastable Cathode for Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1601363.	19.5	48
54	Phase and morphological control of MoO _{3â^x} nanostructures for efficient cancer theragnosis therapy. Nanoscale, 2017, 9, 11012-11016.	5.6	45

#	Article	IF	Citations
55	Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions. Advanced Functional Materials, 2021, 31, 2105579.	14.9	45
56	One-Step Integrated Surface Modification To Build a Stable Interface on High-Voltage Cathode for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16233-16242.	8.0	44
57	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
58	Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. Journal of Power Sources, 2020, 450, 227677.	7.8	42
59	Supersaturated bridge-sulfur and vanadium co-doped MOS2 nanosheet arrays with enhanced sodium storage capability. Nano Research, 2021, 14, 74-80.	10.4	42
60	Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy and Environment, 2022, 7, 266-274.	8.7	41
61	An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22637-22644.	10.3	41
62	Dendrite suppression by anode polishing in zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 15355-15362.	10.3	41
63	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	10.0	40
64	Xylem-Inspired Polyimide/MXene Aerogels with Radial Lamellar Architectures for Highly Sensitive Strain Detection and Efficient Solar Steam Generation. Nano Letters, 2022, 22, 4560-4568.	9.1	40
65	The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system. Energy and Environmental Science, 2021, 14, 3931-3937.	30.8	39
66	Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: A mini-review. Composites Communications, 2021, 27, 100882.	6.3	39
67	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
68	Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 19853-19862.	10.3	38
69	Hollow Cu-doped NiO microspheres as anode materials with enhanced lithium storage performance. RSC Advances, 2019, 9, 20963-20967.	3.6	37
70	CuCo ₂ S ₄ nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation. Nanoscale, 2019, 11, 9733-9742.	5.6	37
71	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	5.2	36
72	Metal-Nitrogen-doped carbon single-atom electrocatalysts for CO2 electroreduction. Composites Part B: Engineering, 2021, 220, 108986.	12.0	35

#	Article	IF	CITATIONS
73	Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 129693.	12.7	35
74	Differential Phagocytosis-Based Photothermal Ablation of Inflammatory Macrophages in Atherosclerotic Disease. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41009-41018.	8.0	33
75	MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. Journal of Power Sources, 2020, 472, 228497.	7.8	33
76	Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Applied Surface Science, 2021, 550, 149313.	6.1	33
77	Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Materials, 2018, 15, 380-387.	18.0	32
78	NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Materials Letters, 2014, 114, 40-43.	2.6	27
79	SnS nanosheets for efficient photothermal therapy. New Journal of Chemistry, 2016, 40, 4464-4467.	2.8	27
80	In situ transmission electron microscopy study of individual nanostructures during lithiation and delithiation processes. Journal of Materials Chemistry A, 2017, 5, 20072-20094.	10.3	27
81	In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells. Nanoscale Research Letters, 2013, 8, 106.	5 . 7	25
82	Fe3S4 nanoparticles for arterial inflammation therapy: Integration of magnetic hyperthermia and photothermal treatment. Applied Materials Today, 2020, 18, 100457.	4.3	25
83	Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochimica Acta, 2015, 186, 1-6.	5.2	24
84	Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. Small Science, 2021, 1, 2100032.	9.9	24
85	A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Liâ€ion Batteries. Advanced Functional Materials, 2017, 27, 1604903.	14.9	22
86	Phosphorusâ€Doped CuCo ₂ O ₄ Oxide with Partial Amorphous Phase as a Robust Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2021, 8, 135-141.	3.4	22
87	A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chemical Engineering Journal, 2021, 410, 128418.	12.7	22
88	Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. Nanotechnology, 2021, 32, 305401.	2.6	22
89	Electron-Deficient Au Nanoparticles Confined in Organic Molecular Cages for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2022, 5, 1276-1283.	5.0	21
90	Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment. ACS Omega, 2019, 4, 1449-1459.	3.5	20

#	Article	IF	CITATIONS
91	Substantially reduced crystallization temperature of SBA-15 mesoporous silica in NaNO3 molten salt. Materials Letters, 2016, 170, 179-182.	2.6	19
92	Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy and Environment, 2020, 5, 506-512.	8.7	19
93	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	2.0	18
94	In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1165-1175.	6.3	18
95	Synthesis and characterization of omniphobic surfaces with thermal, mechanical and chemical stability. RSC Advances, 2016, 6, 106491-106499.	3.6	17
96	Self-assembled carbon nanoribbons with the heteroatom doping used as ultrafast charging cathodes in zinc-ion hybrid supercapacitors. Science China Materials, 2022, 65, 1495-1502.	6.3	16
97	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	14.6	15
98	Vacancy engineering of group VI anions in NiCo2A4 (A \hat{A} = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochimica Acta, 2020, 333, 135515.	5.2	15
99	Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS). Green Energy and Environment, 2023, 8, 989-1005.	8.7	15
100	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	8.1	14
101	In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode. Energy Storage Materials, 2020, 31, 164-171.	18.0	12
102	Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors. Nanotechnology, 2021, 32, 195405.	2.6	12
103	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	18.0	11
104	Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries. Journal of Power Sources, 2022, 542, 231730.	7.8	11
105	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium–Sulfur Batteries. Journal of Physical Chemistry C, 2021, 125, 18604-18613.	3.1	10
106	Hybrid <scp>Ni₂P</scp> / <scp>CoP</scp> Nanosheets as Efficient and Robust Electrocatalysts for Domestic Wastewater Splitting. Energy and Environmental Materials, 2023, 6, .	12.8	10
107	Molten salt synthesis of Zn 1.8 Mn 0.2 SiO 4 luminescent materials in NaCl–ZnCl 2 eutectic salt. Ceramics International, 2016, 42, 7852-7856.	4.8	9
108	Constructing compatible interface between Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte and LiCoO ₂ cathode for stable cycling performances at 4.5 V. Nanoscale, 2021, 13, 7822-7830.	5.6	9

#	Article	IF	Citations
109	Zincâ€kon Batteries: Multiâ€Scale Investigations of Î'â€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€kon Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070068.	19.5	8
110	Engineering oxygen vacancies and surface chemical reconstruction of MOF-derived hierarchical CoO/Ni ₂ P-Co ₂ P nanosheet arrays for advanced aqueous zinc-ion batteries. Dalton Transactions, 2021, 50, 17538-17548.	3.3	8
111	Battery Electrodes: A Dendritic Nickel Cobalt Sulfide Nanostructure for Alkaline Battery Electrodes (Adv. Funct. Mater. 23/2018). Advanced Functional Materials, 2018, 28, 1870154.	14.9	7
112	Interfacial engineering of reduced graphene oxide for high-performance supercapacitor materials. Journal of Electroanalytical Chemistry, 2020, 878, 114679.	3.8	7
113	A facile approach for the synthesis of Cu2â^'x Se nanowires and their field emission properties. Journal of Materials Science, 2014, 49, 532-537.	3.7	6
114	Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites. Optical Materials, 2017, 72, 529-532.	3.6	6
115	Tunable Bifunctional Activity of Mn x Co3â^'x O4 Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1248-1248.	6.8	5
116	Hydrogen Evolution: The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance (Adv. Sci. 12/2020). Advanced Science, 2020, 7, 2070067.	11.2	5
117	Facile room-temperature synthesis of cobalt sulphide for efficient oxygen evolution reaction. Multifunctional Materials, 2021, 4, 025001.	3.7	5
118	Zincâ€ion Batteries: Insights on Flexible Zincâ€ion Batteries from Lab Research to Commercialization (Adv.) Tj ET	Qq0000r	gBŢ /Overlock
119	Uniform NiO nanoparticles used as anodes in Li-ion batteries. IOP Conference Series: Materials Science and Engineering, 0, 490, 022063.	0.6	4
120	Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy and Environment, 2023, 8, 1450-1458.	8.7	4
121	Synthesis and Kinetic Analysis of \hat{A} «-MnO2 Nanowires for Supercapacitor Electrode. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 149-156.	0.5	3
122	Supercapacitors: History, Theory, Emerging Technologies, and Applications. , 2021, , 417-449.		2
123	Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021). Advanced Functional Materials, 2021, 31, 2170089.	14.9	1
124	Seed-Mediated, Shape-Controlled Synthesis Methods for Platinum-Based Electrocatalysts for the Oxygen Reduction Reaction—A Mini Review. Frontiers in Chemistry, 2022, 10, 865214.	3.6	1
125	Electric field induced slanting growth of silicon nanowires with enhanced hydrophobic property. Materials Letters, 2017, 198, 8-11.	2.6	0
126	O perando lab-Based X-Ray Computed Tomography of Zn-Air Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 42-42.	0.0	0

ARTICLE IF CITATIONS

127 MOF-based nanomaterials for zinc-based battery cathodes., 2022,, 315-340. 0