Karen H Vousden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5920117/publications.pdf

Version: 2024-02-01

45 papers 17,927 citations

34 h-index 243625 44 g-index

47 all docs

47 docs citations

47 times ranked

24001 citing authors

#	Article	IF	CITATIONS
1	p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl4. Cell Death and Differentiation, 2022, 29, 514-526.	11.2	13
2	The role of ROS in tumour development and progression. Nature Reviews Cancer, 2022, 22, 280-297.	28.4	453
3	A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Science Signaling, 2022, 15, eabd9099.	3.6	4
4	PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma. Journal of Clinical Investigation, 2022, 132, .	8.2	14
5	Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nature Communications, 2021, 12, 1209.	12.8	76
6	Mutant p53 in cell-cell interactions. Genes and Development, 2021, 35, 433-448.	5.9	26
7	Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nature Communications, 2021, 12, 366.	12.8	138
8	The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nature Communications, 2021, 12, 6176.	12.8	19
9	Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes and Development, 2021, 35, 117-132.	5.9	6
10	Dietary Approaches to Cancer Therapy. Cancer Cell, 2020, 37, 767-785.	16.8	105
10	Dietary Approaches to Cancer Therapy. Cancer Cell, 2020, 37, 767-785. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4.	16.8	105
	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer		
11	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020,	16.8	159
11 12	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6.	16.8	159 111
11 12 13	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6. p53, cancer and the immune response. Journal of Cell Science, 2020, 133, . Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell	16.8 6.4 2.0	159 111 190
11 12 13	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6. p53, cancer and the immune response. Journal of Cell Science, 2020, 133, . Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metabolism, 2019, 30, 720-734.e5. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery,	16.8 6.4 2.0 16.2	159 111 190 135
11 12 13 14	Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 2020, 37, 168-182.e4. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Reports, 2020, 30, 481-496.e6. p53, cancer and the immune response. Journal of Cell Science, 2020, 133, . Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metabolism, 2019, 30, 720-734.e5. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery, 2019, 9, 1268-1287. Taking up the reins of power: metabolic functions of p53. Journal of Molecular Cell Biology, 2019, 11,	16.8 6.4 2.0 16.2	159 111 190 135

#	Article	IF	CITATIONS
19	A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 2018, 28, 721-736.e6.	16.2	159
20	Control of metabolism by p53 – Cancer and beyond. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 32-42.	7.4	133
21	The ERBB network facilitates KRAS-driven lung tumorigenesis. Science Translational Medicine, 2018, 10,	12.4	82
22	Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 2017, 544, 372-376.	27.8	449
23	Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo. Scientific Reports, 2017, 7, 1837.	3.3	19
24	Regulation of Cellular Metabolism and Hypoxia by p53. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026146.	6.2	114
25	CRISPR/Cas9-Mediated <i>Trp53</i> and <i>Brca2</i> Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Research, 2016, 76, 6118-6129.	0.9	145
26	Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 2016, 16, 650-662.	28.4	669
27	Serine one-carbon catabolism with formate overflow. Science Advances, 2016, 2, e1601273.	10.3	128
28	Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes and Development, 2016, 30, 52-63.	5.9	87
29	p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology, 2015, 16, 393-405.	37.0	885
30	iRFP Is a Real Time Marker for Transformation Based Assays in High Content Screening. PLoS ONE, 2014, 9, e98399.	2.5	6
31	iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. Cell Cycle, 2014, 13, 220-226.	2.6	34
32	Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Reports, 2014, 7, 1248-1258.	6.4	468
33	TIGAR, TIGAR, burning bright. Cancer & Metabolism, 2014, 2, 1.	5. 0	92
34	Mutant p53 in Cancer: New Functions and Therapeutic Opportunities. Cancer Cell, 2014, 25, 304-317.	16.8	1,226
35	The role of ubiquitin modification in the regulation of p53. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 137-149.	4.1	138
36	TIGAR Is Required for Efficient Intestinal Regeneration and Tumorigenesis. Developmental Cell, 2013, 25, 463-477.	7.0	154

3

#	Article	IF	CITATIONS
37	Metabolic Regulation by p53 Family Members. Cell Metabolism, 2013, 18, 617-633.	16.2	388
38	Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 2013, 493, 542-546.	27.8	773
39	Interaction of p53 with the CCT Complex Promotes Protein Folding and Wild-Type p53 Activity. Molecular Cell, 2013, 50, 805-817.	9.7	121
40	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	27.8	519
41	Blinded by the Light: The Growing Complexity of p53. Cell, 2009, 137, 413-431.	28.9	2,717
42	p53 in health and disease. Nature Reviews Molecular Cell Biology, 2007, 8, 275-283.	37.0	2,004
43	TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell, 2006, 126, 107-120.	28.9	1,717
44	Live or let die: the cell's response to p53. Nature Reviews Cancer, 2002, 2, 594-604.	28.4	2,906
45	Regulation of Mdm2-Directed Degradation by the C Terminus of p53. Molecular and Cellular Biology, 1998, 18, 5690-5698.	2.3	174