
Richard Meisel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5919043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene expression in <scp> <i>Lucilia sericata </i> </scp> (<scp> Diptera </scp> : <scp> Calliphoridae </scp>) larvae exposed to <scp> <i>Pseudomonas aeruginosa </i> </scp> and <scp> <i>Acinetobacter baumannii </i> </scp> identifies shared and microbeâ€specific induction of immune genes. Insect Molecular Biology, 2022, 31, 85-100.	2.0	6
2	Sexâ€specific aging in animals: Perspective and future directions. Aging Cell, 2022, 21, e13542.	6.7	36
3	Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (<i>Cercopithecus mona</i>). Molecular Biology and Evolution, 2021, 38, 876-890.	8.9	15
4	Gene-Level, but Not Chromosome-Wide, Divergence between a Very Young House Fly Proto-Y Chromosome and Its Homologous Proto-X Chromosome. Molecular Biology and Evolution, 2021, 38, 606-618.	8.9	10
5	The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 2021, 19, 41.	3.8	19
6	The maintenance of polygenic sex determination depends on the dominance of fitness effects which are predictive of the role of sexual antagonism. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
7	Thermal tolerance and preference are both consistent with the clinal distribution of house fly proto-Y chromosomes. Evolution Letters, 2021, 5, 495-506.	3.3	6
8	Temperatureâ€dependent effects of house fly proto‥ chromosomes on gene expression could be responsible for fitness differences that maintain polygenic sex determination. Molecular Ecology, 2021, 30, 5704-5720.	3.9	6
9	Evolution of Sex Determination and Sex Chromosomes: A Novel Alternative Paradigm. BioEssays, 2020, 42, 1900212.	2.5	19
10	Sex Chromosome Evolution in Muscid Flies. G3: Genes, Genomes, Genetics, 2020, 10, 1341-1352.	1.8	15
11	Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology, 2019, 20, 187.	8.8	71
12	Minimal Effects of Proto- <i>Y</i> Chromosomes on House Fly Gene Expression in Spite of Evidence that Selection Maintains Stable Polygenic Sex Determination. Genetics, 2019, 213, 313-327.	2.9	11
13	The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence. BMC Biology, 2019, 17, 100.	3.8	19
14	Using genomic data to study insecticide resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology, 2018, 151, 76-81.	3.6	28
15	Sexual conflict and the maintenance of genetic variation in natural populations. Molecular Ecology, 2018, 27, 3569-3571.	3.9	6
16	Genes Relocated Between Drosophila Chromosome Arms Evolve Under Relaxed Selective Constraints Relative to Non-Relocated Genes. Journal of Molecular Evolution, 2018, 86, 340-352.	1.8	2
17	Morphometric and genetic differentiation among populations of flatâ€headed cusimanse (<i>Crossarchus platycephalus</i>) in Nigeria. Ecology and Evolution, 2018, 8, 7228-7235.	1.9	3
18	The house fly Y Chromosome is young and minimally differentiated from its ancient X Chromosome partner. Genome Research, 2017, 27, 1417-1426.	5.5	33

RICHARD MEISEL

#	Article	IF	CITATIONS
19	A Review of Bacterial Interactions With Blow Flies (Diptera: Calliphoridae) of Medical, Veterinary, and Forensic Importance. Annals of the Entomological Society of America, 2017, 110, 19-36.	2.5	71
20	Is Multifactorial Sex Determination in the House Fly, <i>Musca domestica</i> (L.), Stable Over Time?. Journal of Heredity, 2016, 107, 615-625.	2.4	29
21	Transcriptome Differences between Alternative Sex Determining Genotypes in the House Fly, <i>Musca domestica</i> . Genome Biology and Evolution, 2015, 7, 2051-2061.	2.5	30
22	The Evolving Puzzle of Autosomal <i>Versus</i> Y-linked Male Determination in <i>Musca domestica</i> . G3: Genes, Genomes, Genetics, 2015, 5, 371-384.	1.8	39
23	Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biology, 2014, 15, 466.	8.8	252
24	The faster-X effect: integrating theory and data. Trends in Genetics, 2013, 29, 537-544.	6.7	222
25	Faster-X Evolution of Gene Expression in Drosophila. PLoS Genetics, 2012, 8, e1003013.	3.5	83
26	Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Research, 2012, 22, 1255-1265.	5.5	133
27	The poly(A) polymerase GLD2 is required for spermatogenesis in <i>Drosophila melanogaster</i> . Development (Cambridge), 2011, 138, 1619-1629.	2.5	36
28	Towards a More Nuanced Understanding of the Relationship between Sex-Biased Gene Expression and Rates of Protein-Coding Sequence Evolution. Molecular Biology and Evolution, 2011, 28, 1893-1900.	8.9	126
29	Teaching Tree-Thinking to Undergraduate Biology Students. Evolution: Education and Outreach, 2010, 3, 621-628.	0.8	51
30	Adaptive Evolution of Genes Duplicated from the Drosophila pseudoobscura neo-X Chromosome. Molecular Biology and Evolution, 2010, 27, 1963-1978.	8.9	16
31	A Complex Suite of Forces Drives Gene Traffic from Drosophila X Chromosomes. Genome Biology and Evolution, 2009, 1, 176-188.	2.5	87
32	Evolutionary Dynamics of Recently Duplicated Genes: Selective Constraints on Diverging Paralogs in the Drosophila pseudoobscura Genome. Journal of Molecular Evolution, 2009, 69, 81-93.	1.8	15
33	Repeat mediated gene duplication in the Drosophila pseudoobscura genome. Gene, 2009, 438, 1-7.	2.2	12
34	Meiotic Transmission of Drosophila pseudoobscura Chromosomal Arrangements. PLoS ONE, 2007, 2, e530.	2.5	6
35	Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 2005, 15, 1-18.	5.5	453