Hiroyuki Sekimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918714/publications.pdf

Version: 2024-02-01

53 papers 1,464 citations

331670 21 h-index 36 g-index

53 all docs 53 docs citations

53 times ranked 1402 citing authors

#	Article	IF	CITATIONS
1	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	7.1	292
2	Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2436-2441.	7.1	128
3	Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant Journal, 1999, 17, 241-250.	5.7	123
4	Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications, 2018, 9, 5283.	12.8	54
5	Biochemical and physiological properties of a protein inducing protoplast release during conjugation in theClosterium peracerosum-strigosum-littorale complex. Planta, 1990, 182, 348-354.	3.2	50
6	Stable Nuclear Transformation of the Closterium peracerosum–strigosum–littorale Complex. Plant and Cell Physiology, 2011, 52, 1676-1685.	3.1	45
7	Regulation of expression of the genes for a sex pheromone by an inducer of the sex pheromone in the Closterium peracerosum-strigosum-littorale complex. Planta, 1994, 193, 137-44.	3.2	39
8	Analysis of binding of biotinylated protoplast-release-inducing protein that induces release of gametic protoplasts in the Closterium peracerosum-strigosum-littorale complex. Planta, 1993, 189, 468-474.	3.2	36
9	Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastidâ€targeting, nuclearâ€encoded gene ⟨i>psbO⟨/i>⟨sup>1⟨/sup>. Journal of Phycology, 2007, 43, 1302-1309.	2.3	34
10	Expression of Genes from Paternal Alleles in Rice Zygotes and Involvement of <i>OsASGR-BBML1 < /i>Initiation of Zygotic Development. Plant and Cell Physiology, 2019, 60, 725-737.</i>	3.1	32
11	SEX PHEROMONES THAT INDUCE SEXUAL CELL DIVISION IN THE CLOSTERIUM PERACEROSUM-STRIGOSUM-LITTORALE COMPLEX (CHAROPHYTA)1. Journal of Phycology, 2003, 39, 303-309.	2.3	28
12	Expression of Exogenous Genes Under the Control of Endogenous HSP70 and CAB Promoters in the Closterium peracerosum–strigosum–littorale complex. Plant and Cell Physiology, 2008, 49, 625-632.	3.1	28
13	The Evolution of Male–Female Sexual Dimorphism Predates the Gender-Based Divergence of the Mating Locus Gene MAT3/RB. Molecular Biology and Evolution, 2013, 30, 1038-1040.	8.9	28
14	Intercellular Communication During Sexual Reproduction of Closterium (Conjugatophyceae). Journal of Plant Research, 2000, 113, 343-352.	2.4	27
15	A Sex Pheromone, Protoplast Release-inducing Protein (PR-IP) Inducer, Induces Sexual Cell Division and Production of PR-IP in Closterium. Plant and Cell Physiology, 2005, 46, 1472-1476.	3.1	26
16	A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, <i>Closterium peracerosum–strigosum–littorale</i> Complex. Plant and Cell Physiology, 2015, 56, 1456-1462.	3.1	25
17	Gene Expression Profiling Using cDNA Microarray Analysis of the Sexual Reproduction Stage of the Unicellular Charophycean Alga Closterium peracerosum-strigosum-littorale Complex. Plant Physiology, 2006, 141, 271-279.	4.8	24
18	Sexual reproduction and sex determination in green algae. Journal of Plant Research, 2017, 130, 423-431.	2.4	24

#	Article	IF	Citations
19	ANALYSIS OF GAMETIC PROTOPLAST RELEASE IN THE CLOSTERIUM PERACEROSUM-STRIGOSUM-LITTORALE COMPLEX (CHLOROPHYTA)1. Journal of Phycology, 1992, 28, 615-619.	2.3	22
20	DETECTION AND EVALUATION OF A NOVEL SEXUAL PHEROMONE THAT INDUCES SEXUAL CELL DIVISION OF CLOSTERIUM EHRENBERGII (CHLOROPHYTA)1. Journal of Phycology, 1997, 33, 441-445.	2.3	22
21	Mucilage Secretion Regulated by Sex Pheromones in Closterium peracerosum-strigosum-littorale Complex. Plant and Cell Physiology, 2003, 44, 1081-1087.	3.1	22
22	Plant Sex Pheromones. Vitamins and Hormones, 2005, 72, 457-478.	1.7	21
23	Purification and characterization of a pheromone that induces sexual cell division in the unicellular green alga Closterium ehrenbergii. Plant Physiology and Biochemistry, 2002, 40, 183-188.	5.8	19
24	Production and secretion of a biologically active Closterium sex pheromone by Saccharomyces cerevisiae. Plant Physiology and Biochemistry, 2002, 40, 789-794.	5.8	19
25	CLONING AND CHARACTERIZATION OF A cDNA ENCODING A SEXUAL CELL DIVISIONâ€NDUCING PHEROMONE FROM A UNICELLULAR GREEN ALGA <i>CLOSTERIUM EHRENBERGII</i> (CHLOROPHYTA). Journal of Phycology, 2003, 39, 931-936.	2.3	19
26	Physiological characterization of the sex pheromone protoplast-release-inducing protein from the Closterium peracerosum-strigosum-littorale complex (Charophyta). Phycological Research, 2006, 54, 116-121.	1.6	19
27	REPRODUCTIVE ISOLATION BY SEX PHEROMONES IN THE <i>CLOSTERIUM PERACEROSUM–STRIGOSUM–LITTORALE</i> COMPLEX (ZYGNEMATALES, CHAROPHYCEAE) Journal of Phycology, 2008, 44, 1197-1203.	2.3	19
28	INTRACELLULAR LOCALIZATION OF AN ENDOGENOUS CELLULOSE SYNTHASE OF MICRASTERIAS DENTICULATA (DESMIDIALES, CHLOROPHYTA) BY MEANS OF TRANSIENT GENETIC TRANSFORMATION1. Journal of Phycology, 2010, 46, 839-845.	2.3	18
29	New Insights into the Regulation of Sexual Reproduction in Closterium. International Review of Cell and Molecular Biology, 2012, 297, 309-338.	3.2	18
30	Zygospore formation between homothallic and heterothallic strains of Closterium. Sexual Plant Reproduction, 2012, 25, 1-9.	2.2	18
31	CRISPR/Cas9-based knockouts reveal that CpRLP1 is a negative regulator of the sex pheromone PR-IP in the Closterium peracerosum-strigosum-littorale complex. Scientific Reports, 2017, 7, 17873.	3.3	17
32	Expressed Sequence Tags from the Closterium peracerosum-strigosum-littorale complex, a Unicellular Charophycean Alga, in the Sexual Reproduction Process. DNA Research, 2003, 10, 147-153.	3.4	16
33	SEXUAL PROCESSES AND PHYLOGENETIC RELATIONSHIPS OF A HOMOTHALLIC STRAIN IN THECLOSTERIUM PERACEROSUM-STRIGOSUM-LITTORALECOMPLEX (ZYGNEMATALES, CHAROPHYCEAE). Journal of Phycology, 2010, 46, 278-284.	2.3	15
34	Molecular evolutionary analysis of a gender-limited MID ortholog from the homothallic species Volvox africanus with male and monoecious spheroids. PLoS ONE, 2017, 12, e0180313.	2.5	13
35	Highly efficient transformation of the model zygnematophycean alga <i>Closterium peracerosumâ€strigosumâ€littorale</i> complex by squareâ€pulse electroporation. New Phytologist, 2022, 233, 569-578.	7.3	13
36	Characterization of sexual reproductive processes in <i><scp>C</scp>hara braunii</i> (<scp>C</scp> harales, <scp>C</scp> harophyceae). Phycological Research, 2014, 62, 214-221.	1.6	12

#	Article	IF	Citations
37	The genus <i>Closterium </i> , a new model organism to study sexual reproduction in streptophytes. New Phytologist, 2019, 221, 99-104.	7.3	12
38	An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta. BMC Research Notes, 2011, 4, 330.	1.4	11
39	Characterization and Molecular Cloning of Conjugation-Regulating Sex Pheromones in Homothallic Closterium. Plant and Cell Physiology, 2010, 51, 1515-1523.	3.1	10
40	BIOCHEMICAL, PHYSIOLOGICAL, AND MOLECULAR ANALYSIS OF SEXUAL ISOLATION IN THE SPECIES COMPLEX CLOSTERIUM PERACEROSUM-STRIGOSUM-LITTORALE (CHLOROPHYTA)1. Journal of Phycology, 1995, 31, 611-615.	2.3	9
41	Analysis of genomic sequences encoding a sex pheromone from the Closterium peracerosum-strigosum-littorale complex. Journal of Plant Research, 1997, 110, 463-467.	2.4	7
42	Conjugation processes of <i>Penium margaritaceum</i> (Zygnemophyceae, Charophyta). Phycological Research, 2011, 59, 74-82.	1.6	7
43	Identification of a new mating group and reproductive isolation in the Closterium peracerosum–strigosum–littorale complex. Journal of Plant Research, 2018, 131, 735-746.	2.4	6
44	Preparation of Knockdown Transformants of Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex. Bio-protocol, 2016, 6, .	0.4	6
45	Effect of antibiotics on cell proliferation in the Closterium peracerosum-strigosum-littorale complex (Charophyceae, Chlorophyta). Biologia (Poland), 2008, 63, 936-940.	1.5	5
46	Zygnematophycean algae: Possible models for cellular and evolutionary biology. Seminars in Cell and Developmental Biology, 2022, , .	5.0	5
47	Sexual Reproduction of a Unicellular Charophycean Alga, Closterium peracerosum-strogosum-littorale Complex. , 2014, , 345-357.		4
48	Concanavalin A Disrupts the Release of Fibrous Material Necessary for Zygote Formation of a Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex. Frontiers in Plant Science, 2016, 7, 1040.	3.6	4
49	Three sex phenotypes in a haploid algal species give insights into the evolutionary transition to a selfâ€compatible mating system*. Evolution; International Journal of Organic Evolution, 2021, 75, 2984-2993.	2.3	4
50	Induction of sex pheromone secretion and observations of the secretory pathway in the Closterium peracerosum-strigosum-littorale complex. Plant Science, 2007, 173, 206-212.	3.6	3
51	Properties of cell surface carbohydrates in sexual reproduction of the <i><scp>C</scp>losterium peracerosum–strigosum–littorale</i> complex (<scp>Z</scp> ygnematophyceae,) Tj ETQq1 1 0.784314 rgBT	/@øerlock	180 Tf 50 13
52	Detailed analyses on the parthenospore formation in <i>Closterium moniliferum</i> (Zygnematophyceae, Charophyta). Phycologia, 2014, 53, 571-578.	1.4	2
53	Biochemical Characterization of an Adenylate Cyclase, CyaB1, in the Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Plant Research, 2001, 114, 387-394.	2.4	1