Brook L Nunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5918307/publications.pdf Version: 2024-02-01

RROOK L NUNN

#	Article	IF	CITATIONS
1	The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrometry Reviews, 2020, 39, 229-244.	5.4	469
2	Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME Journal, 2010, 4, 673-685.	9.8	244
3	Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 2016, 6, 207-213.	18.8	153
4	Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9009-9014.	7.1	112
5	Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. BMC Genomics, 2014, 15, 951.	2.8	103
6	Critical decisions in metaproteomics: achieving high confidence protein annotations in a sea of unknowns. ISME Journal, 2017, 11, 309-314.	9.8	93
7	Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation. PLoS ONE, 2013, 8, e75653.	2.5	86
8	Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern Coast of New Zealand. Marine Chemistry, 2011, 126, 97-107.	2.3	81
9	What is the oxygen exposure time of laterally transported organic matter along the Washington margin?. Marine Chemistry, 2004, 92, 157-165.	2.3	73
10	Progress and Challenges in Ocean Metaproteomics and Proposed Best Practices for Data Sharing. Journal of Proteome Research, 2019, 18, 1461-1476.	3.7	73
11	An Alignment-Free "Metapeptide―Strategy for Metaproteomic Characterization of Microbiome Samples Using Shotgun Metagenomic Sequencing. Journal of Proteome Research, 2016, 15, 2697-2705.	3.7	67
12	Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. ISME Journal, 2013, 7, 2349-2360.	9.8	62
13	Deciphering diatom biochemical pathways via whole-cell proteomics. Aquatic Microbial Ecology, 2009, 55, 241-253.	1.8	48
14	Proteomics of <scp> <i>C</i> </scp> <i>olwellia psychrerythraea </i> at subzero temperatures – a life with limited movement, flexible membranes and vital DNA repair. Environmental Microbiology, 2015, 17, 2319-2335.	3.8	46
15	Identifying and tracking proteins through the marine water column: Insights into the inputs and preservation mechanisms of protein in sediments. Geochimica Et Cosmochimica Acta, 2012, 83, 324-359.	3.9	44
16	MetaGOmics: A Web-Based Tool for Peptide-Centric Functional and Taxonomic Analysis of Metaproteomics Data. Proteomes, 2018, 6, 2.	3.5	43
17	Tandem mass spectrometry investigation of ADP-ribosylated kemptide. Journal of the American Society for Mass Spectrometry, 2009, 20, 477-483.	2.8	39
18	Disseminating Metaproteomic Informatics Capabilities and Knowledge Using the Galaxy-P Framework. Proteomes, 2018, 6, 7.	3.5	39

Brook L Nunn

#	Article	IF	CITATIONS
19	Acquisition of Iron by Alkaliphilic <i>Bacillus</i> Species. Applied and Environmental Microbiology, 2010, 76, 6955-6961.	3.1	33
20	A comparison of non-hydrolytic methods for extracting amino acids and proteins from coastal marine sediments. Marine Chemistry, 2006, 98, 31-42.	2.3	29
21	Survey of metaproteomics software tools for functional microbiome analysis. PLoS ONE, 2020, 15, e0241503.	2.5	28
22	The path to preservation: Using proteomics to decipher the fate of diatom proteins during microbial degradation. Limnology and Oceanography, 2010, 55, 1790-1804.	3.1	22
23	A Sectioning and Database Enrichment Approach for Improved Peptide Spectrum Matching in Large, Genome-Guided Protein Sequence Databases. Journal of Proteome Research, 2020, 19, 2772-2785.	3.7	22
24	Metaproteomics reveal that rapid perturbations in organic matter prioritize functional restructuring over taxonomy in western Arctic Ocean microbiomes. ISME Journal, 2020, 14, 39-52.	9.8	21
25	Assessing Protein Sequence Database Suitability Using De Novo Sequencing. Molecular and Cellular Proteomics, 2020, 19, 198-208.	3.8	21
26	Microbial metabolism and adaptations in <i>Atribacteria</i> â€dominated methane hydrate sediments. Environmental Microbiology, 2021, 23, 4646-4660.	3.8	20
27	Integrating Discovery-driven Proteomics and Selected Reaction Monitoring To Develop a Noninvasive Assay for Geoduck Reproductive Maturation. Journal of Proteome Research, 2017, 16, 3298-3309.	3.7	18
28	Physiological and molecular responses of lobe coral indicate nearshore adaptations to anthropogenic stressors. Scientific Reports, 2021, 11, 3423.	3.3	18
29	Comparison of a Salmonella typhimurium proteome defined by shotgun proteomics directly on an LTQ-FT and by proteome pre-fractionation on an LCQ-DUO. Briefings in Functional Genomics & Proteomics, 2006, 5, 154-168.	3.8	16
30	Bacterial Quorum-Sensing Signal Arrests Phytoplankton Cell Division and Impacts Virus-Induced Mortality. MSphere, 2021, 6, .	2.9	16
31	Suspended marine particulate proteins in coastal and oligotrophic waters. Journal of Marine Systems, 2015, 143, 39-48.	2.1	15
32	Diversity of Psychrophilic Bacteria in Sea and Glacier Ice Environments—Insights Through Genomics, Metagenomics, and Proteomics Approaches. , 2019, , 197-216.		15
33	Evaluation of electrophoretic protein extraction and database-driven protein identification from marine sediments. Limnology and Oceanography: Methods, 2012, 10, 353-366.	2.0	10
34	Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome. Journal of Proteomics, 2018, 173, 89-98.	2.4	10
35	Subzero, saline incubations of <i>Colwellia psychrerythraea</i> reveal strategies and biomarkers for sustained life in extreme icy environments. Environmental Microbiology, 2021, 23, 3840-3866.	3.8	10
36	The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry?. Journal of Plankton Research, 2022, 44, 485-495.	1.8	10

BROOK L NUNN

#	Article	IF	CITATIONS
37	Pacific geoduck (Panopea generosa) resilience to natural pH variation. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 30, 91-101.	1.0	9
38	Shotgun proteomics as a viable approach for biological discovery in the Pacific oyster. , 2013, 1, cot009-cot009.		8
39	Coupled microbiome analyses highlights relative functional roles of bacteria in a bivalve hatchery. Environmental Microbiomes, 2021, 16, 7.	5.0	7
40	Electrophoretic Extraction and Proteomic Characterization of Proteins Buried in Marine Sediments. Chromatography (Basel), 2014, 1, 176-193.	1.2	6
41	Sample Preparation and Processing for Planktonic Microbial Community Proteomics. Methods in Enzymology, 2013, 531, 271-287.	1.0	4
42	MS analysis of a dilution series of bacteria:phytoplankton to improve detection of low abundance bacterial peptides. Scientific Reports, 2018, 8, 9276.	3.3	4
43	Novel insights into the taxonomic diversity and molecular mechanisms of bacterial Mn(<scp>III</scp>) reduction. Environmental Microbiology Reports, 2020, 12, 583-593.	2.4	4
44	Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: Insights and challenges. Limnology and Oceanography, 2022, 67, 1911-1930.	3.1	4
45	Shotgun Proteomics Identifies Active Metabolic Pathways in Bleached Coral Tissue and Intraskeletal Compartments. Frontiers in Marine Science, 2022, 9, .	2.5	3
46	Growth phase proteomics of the heterotrophic marine bacterium Ruegeria pomeroyi. Scientific Data, 2019, 6, 303.	5.3	1
47	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0
48	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0
49	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0
50	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0
51	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0
52	Survey of metaproteomics software tools for functional microbiome analysis. , 2020, 15, e0241503.		0