
Castrense Savojardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5917192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning solutions for predicting protein–protein interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	19
2	Cloning the barley <i>nec3</i> disease lesion mimic mutant using complementation by sequencing. Plant Genome, 2022, , e20187.	2.8	0
3	A Glance into MTHFR Deficiency at a Molecular Level. International Journal of Molecular Sciences, 2022, 23, 167.	4.1	2
4	Turning Failures into Applications: The Problem of Protein ΔΔG Prediction. Methods in Molecular Biology, 2022, 2449, 169-185.	0.9	5
5	Molecular Effects of Mutations in Human Genetic Diseases. International Journal of Molecular Sciences, 2022, 23, 6408.	4.1	0
6	On the critical review of five machine learning-based algorithms for predicting protein stability changes upon mutation. Briefings in Bioinformatics, 2021, 22, 601-603.	6.5	13
7	Computer-Aided Prediction of Protein Mitochondrial Localization. Methods in Molecular Biology, 2021, 2275, 433-452.	0.9	2
8	Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. International Journal of Molecular Sciences, 2021, 22, 2878.	4.1	3
9	BetAware-Deep: An Accurate Web Server for Discrimination and Topology Prediction of Prokaryotic Transmembrane β-barrel Proteins. Journal of Molecular Biology, 2021, 433, 166729.	4.2	13
10	BENZ WS: the Bologna ENZyme Web Server for four-level EC number annotation. Nucleic Acids Research, 2021, 49, W60-W66.	14.5	7
11	Mapping OMIM Disease–Related Variations on Protein Domains Reveals an Association Among Variation Type, Pfam Models, and Disease Classes. Frontiers in Molecular Biosciences, 2021, 8, 617016.	3.5	5
12	DOME: recommendations for supervised machine learning validation in biology. Nature Methods, 2021, 18, 1122-1127.	19.0	105
13	DeepREx-WS: A web server for characterising protein–solvent interaction starting from sequence. Computational and Structural Biotechnology Journal, 2021, 19, 5791-5799.	4.1	4
14	Comparative genomics of tadpole shrimps (Crustacea, Branchiopoda, Notostraca): Dynamic genome evolution against the backdrop of morphological stasis. Genomics, 2021, 113, 4163-4172.	2.9	7
15	DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics, 2020, 36, 56-64.	4.1	61
16	Protein–Protein Interaction Methods and Protein Phase Separation. Annual Review of Biomedical Data Science, 2020, 3, 89-112.	6.5	18
17	Highlighting Human Enzymes Active in Different Metabolic Pathways and Diseases: The Case Study of EC 1.2.3.1 and EC 2.3.1.9. Biomedicines, 2020, 8, 250.	3.2	3
18	Large-scale prediction and analysis of protein sub-mitochondrial localization with DeepMito. BMC Bioinformatics, 2020, 21, 266.	2.6	6

#	Article	IF	CITATIONS
19	Solvent Accessibility of Residues Undergoing Pathogenic Variations in Humans: From Protein Structures to Protein Sequences. Frontiers in Molecular Biosciences, 2020, 7, 626363.	3.5	58
20	Transmembrane Domain Prediction. , 2019, , 46-52.		0
21	Assessing predictions on fitness effects of missense variants in calmodulin. Human Mutation, 2019, 40, 1463-1473.	2.5	8
22	Assessing predictions of the impact of variants on splicing in CAGI5. Human Mutation, 2019, 40, 1215-1224.	2.5	18
23	Assessment of blind predictions of the clinical significance of <i>BRCA1</i> and <i>BRCA2</i> variants. Human Mutation, 2019, 40, 1546-1556.	2.5	19
24	Assessing computational predictions of the phenotypic effect of cystathionineâ€betaâ€synthase variants. Human Mutation, 2019, 40, 1530-1545.	2.5	5
25	Assessment of predicted enzymatic activity of α― <i>N</i> â€acetylglucosaminidase variants of unknown significance for CAGI 2016. Human Mutation, 2019, 40, 1519-1529.	2.5	10
26	Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAClâ \in 5. Human Mutation, 2019, 40, 1474-1485.	2.5	8
27	Evaluating the predictions of the protein stability change upon single amino acid substitutions for the FXN CAGI5 challenge. Human Mutation, 2019, 40, 1392-1399.	2.5	16
28	Assessing the performance of in silico methods for predicting the pathogenicity of variants in the gene CHEK2, among Hispanic females with breast cancer. Human Mutation, 2019, 40, 1612-1622.	2.5	8
29	Assessment of methods for predicting the effects of PTEN and TPMT protein variants. Human Mutation, 2019, 40, 1495-1506.	2.5	16
30	Predicting venous thromboembolism risk from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Human Mutation, 2019, 40, 1314-1320.	2.5	10
31	Are machine learning based methods suited to address complex biological problems? Lessons from CAGIâ€5 challenges. Human Mutation, 2019, 40, 1455-1462.	2.5	6
32	Functional and Structural Features of Disease-Related Protein Variants. International Journal of Molecular Sciences, 2019, 20, 1530.	4.1	15
33	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	8.8	261
34	On the biases in predictions of protein stability changes upon variations: the INPS test case. Bioinformatics, 2019, 35, 2525-2527.	4.1	32
35	Draft genomes and genomic divergence of two <i>Lepidurus</i> tadpole shrimp species (Crustacea,) Tj ETQq1	1 0.784314 4.8	4 rgBT /Overlo

DeepSig: deep learning improves signal peptide detection in proteins. Bioinformatics, 2018, 34, 1690-1696. 4.1 92

CASTRENSE SAVOJARDO

#	Article	IF	CITATIONS
37	BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Research, 2018, 46, W459-W466.	14.5	270
38	SChloro: directing <i>Viridiplantae</i> proteins to six chloroplastic sub-compartments. Bioinformatics, 2017, 33, 347-353.	4.1	21
39	ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model. Bioinformatics, 2017, 33, 1656-1663.	4.1	28
40	eDGAR: a database of Disease-Gene Associations with annotated Relationships among genes. BMC Genomics, 2017, 18, 554.	2.8	52
41	INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics, 2016, 32, 2542-2544.	4.1	170
42	Large scale analysis of protein stability in OMIM disease related human protein variants. BMC Genomics, 2016, 17, 397.	2.8	37
43	TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins. Bioinformatics, 2015, 31, 3269-3275.	4.1	46
44	INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 2015, 31, 2816-2821.	4.1	109
45	Computer-Based Prediction of Mitochondria-Targeting Peptides. Methods in Molecular Biology, 2015, 1264, 305-320.	0.9	6
46	TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs. Bioinformatics, 2014, 30, 2973-2974.	4.1	34
47	Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations. BMC Bioinformatics, 2013, 14, S10.	2.6	10
48	BCov: a method for predicting Î ² -sheet topology using sparse inverse covariance estimation and integer programming. Bioinformatics, 2013, 29, 3151-3157.	4.1	17
49	The prediction of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields. Bioinformatics, 2013, 29, 981-988.	4.1	17
50	BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics, 2013, 29, 504-505.	4.1	41
51	Machine-Learning Methods to Predict Protein Interaction Sites in Folded Proteins. Lecture Notes in Computer Science, 2012, , 127-135.	1.3	2
52	Improving the detection of transmembrane β-barrel chains with N-to-1 extreme learning machines. Bioinformatics, 2011, 27, 3123-3128.	4.1	21
53	Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization. Bioinformatics, 2011, 27, 2224-2230.	4.1	37
54	MemPype: a pipeline for the annotation of eukaryotic membrane proteins. Nucleic Acids Research, 2011, 39, W375-W380.	14.5	28

#	Article	IF	CITATIONS
55	Prediction of the Bonding State of Cysteine Residues in Proteins with Machine-Learning Methods. Lecture Notes in Computer Science, 2011, , 98-111.	1.3	3
56	Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications. Algorithms for Molecular Biology, 2009, 4, 13.	1.2	17