Nicole M Thielens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5914822/publications.pdf

Version: 2024-02-01

44069 79698 6,456 167 48 citations h-index papers

73 g-index 182 182 182 6226 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	6.5	6
2	Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Frontiers in Immunology, 2022, 13, 869720.	4.8	10
3	Headless C1q: a new molecular tool to decipher its collagenâ€ike functions. FEBS Journal, 2021, 288, 2030-2041.	4.7	8
4	Analysis of the Ligand Recognition Specificities of Human Ficolins Using Surface Plasmon Resonance. Methods in Molecular Biology, 2021, 2227, 205-226.	0.9	2
5	Structures of the MASP Proteases and Comparison with Complement C1r and C1s. , 2021, , 73-101.		O
6	Anti-Ficolin-2 and Anti-Ficolin-3 Autoantibody Detection by ELISA. Methods in Molecular Biology, 2021, 2227, 121-132.	0.9	0
7	Molecular Basis of Complement C1q Collagen-Like Region Interaction with the Immunoglobulin-Like Receptor LAIR-1. International Journal of Molecular Sciences, 2021, 22, 5125.	4.1	12
8	Functional recombinant human complement C1q with different affinity tags. Journal of Immunological Methods, 2021, 492, 113001.	1.4	1
9	DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathogens, 2021, 17, e1009576.	4.7	133
10	Soluble FAS Ligand Enhances Suboptimal CD40L/IL-21–Mediated Human Memory B Cell Differentiation into Antibody-Secreting Cells. Journal of Immunology, 2021, 207, 449-458.	0.8	8
11	Insights into the ligand binding specificity of SRECâ \in II (scavenger receptor expressed by endothelial) Tj ETQq $1\ 1$	0.784314	t rgBT /Overlo
12	Recombinant C1q variants modulate macrophage responses but do not activate the classical complement pathway. Molecular Immunology, 2020, 117, 65-72.	2.2	12
13	The Immunopathology of Complement Proteins and Innate Immunity in Autoimmune Disease. Clinical Reviews in Allergy and Immunology, 2020, 58, 229-251.	6.5	47
14	Complement C1q Interacts With LRP1 Clusters II and IV Through a Site Close but Different From the Binding Site of Its C1r and C1s-Associated Proteases. Frontiers in Immunology, 2020, 11, 583754.	4.8	5
15	Transient pentameric IgM fulfill biological function—Effect of expression host and transfection on IgM properties. PLoS ONE, 2020, 15, e0229992.	2.5	4
16	Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatology, The, 2020, 2, e99-e109.	3.9	38
17	Molecular and Cellular Interactions of Scavenger Receptor SR-F1 With Complement C1q Provide Insights Into Its Role in the Clearance of Apoptotic Cells. Frontiers in Immunology, 2020, 11, 544.	4.8	17
18	Editorial: The Role of Complement in Health and Disease. Frontiers in Immunology, 2019, 10, 1869.	4.8	30

#	Article	IF	CITATIONS
19	Complement C1r serine protease contributes to kidney fibrosis. American Journal of Physiology - Renal Physiology, 2019, 317, F1293-F1304.	2.7	16
20	Interaction of C1q With Pentraxin 3 and IgM Revisited: Mutational Studies With Recombinant C1q Variants. Frontiers in Immunology, 2019, 10, 461.	4.8	32
21	C1R Mutations Trigger Constitutive Complement 1 Activation in Periodontal Ehlers-Danlos Syndrome. Frontiers in Immunology, 2019, 10, 2537.	4.8	26
22	Two Different Missense C1S Mutations, Associated to Periodontal Ehlers-Danlos Syndrome, Lead to Identical Molecular Outcomes. Frontiers in Immunology, 2019, 10, 2962.	4.8	10
23	Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses, 2019, 11, 15.	3.3	10
24	Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 292-302.	3.3	4
25	C1q restrains autoimmunity and viral infection by regulating CD8 ⁺ T cell metabolism. Science, 2018, 360, 558-563.	12.6	133
26	Autoantibodies Targeting Ficolinâ€2 in Systemic Lupus Erythematosus Patients With Active Nephritis. Arthritis Care and Research, 2018, 70, 1263-1268.	3.4	14
27	Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. Journal of Physical Chemistry B, 2018, 122, 757-763.	2.6	7
28	Impact of the surface charge of polydiacetylene micelles on their interaction with human innate immune protein C1q and the complement system. International Journal of Pharmaceutics, 2018, 536, 434-439.	5.2	14
29	Active human complement reduced the titer of Zikaviruses via formation of the membrane-attack complex. Molecular Immunology, 2018, 102, 216.	2.2	0
30	Scavenger receptors expressed by endothelial cells SREC-I/SR-F1 and SREC-II both interact with C1q and calreticulin. Molecular Immunology, 2018, 102, 220.	2.2	1
31	Active Human Complement Reduces the Zika Virus Load via Formation of the Membrane-Attack Complex. Frontiers in Immunology, 2018, 9, 2177.	4.8	33
32	Recombinant C1q variants do not activate the classical pathway, but modulate phagocytosis and cytokine production in phagocytes. Molecular Immunology, 2018, 102, 149-150.	2.2	0
33	Two missense C1S mutations, associated to the periodontal Ehlers–Danlos syndrome, lead to the same extracellular molecular outcome. Molecular Immunology, 2018, 102, 152-153.	2.2	0
34	C1r., 2018,, 99-106.		1
35	C1s., 2018,, 107-115.		2
36	Antibodies targeting circulating protective molecules in lupus nephritis: Interest as serological biomarkers. Autoimmunity Reviews, 2018, 17, 890-899.	5 . 8	30

#	Article	IF	Citations
37	C1q and Mannose-Binding Lectin Interact with CR1 in the Same Region on CCP24-25 Modules. Frontiers in Immunology, 2018, 9, 453.	4.8	19
38	C1q: A fresh look upon an old molecule. Molecular Immunology, 2017, 89, 73-83.	2.2	188
39	Deciphering Key Residues Involved in the Virulence-promoting Interactions between Streptococcus pneumoniae and Human Plasminogen. Journal of Biological Chemistry, 2017, 292, 2217-2225.	3.4	17
40	Catalytically inactive Gla-domainless factor Xa binds to TFPI and restores <i>ex vivo</i> coagulation in hemophilia plasma. Haematologica, 2017, 102, e483-e485.	3.5	9
41	Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Scientific Reports, 2017, 7, 16958.	3.3	9
42	Structure of the C1 complex of complement. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5766-E5767.	7.1	4
43	Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q. Frontiers in Immunology, 2016, 7, 79.	4.8	27
44	Editorial: State-of-the-Art Research on C1q and the Classical Complement Pathway. Frontiers in Immunology, 2016, 7, 398.	4.8	9
45	Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein. Journal of Virology, 2016, 90, 5256-5269.	3.4	24
46	Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. American Journal of Human Genetics, 2016, 99, 1005-1014.	6.2	100
47	Recombinant human C1q variants with differential ligand binding capacities. Immunobiology, 2016, 221, 1159.	1.9	0
48	Human ficolin-1 interacts with Ebola virus glycoprotein: A novel case of lectin-dependent enhancement of viral infection. Immunobiology, 2016, 221, 1160.	1.9	0
49	First Membrane Proximal External Region–Specific Anti-HIV1 Broadly Neutralizing Monoclonal IgA1 Presenting Short CDRH3 and Low Somatic Mutations. Journal of Immunology, 2016, 197, 1979-1988.	0.8	1
50	Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties. IUCrJ, 2016, 3, 408-419.	2.2	21
51	Association between the Presence of Autoantibodies Targeting Ficolin-3 and Active Nephritis in Patients with Systemic Lupus Erythematosus. PLoS ONE, 2016, 11, e0160879.	2.5	24
52	Role of C1q in Efferocytosis and Self-Tolerance â€" Links With Autoimmunity. , 2015, , .		4
53	Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats. PLoS ONE, 2015, 10, e0132446.	2.5	27
54	Human L-Ficolin Recognizes Phosphocholine Moieties of Pneumococcal Teichoic Acid. Journal of Immunology, 2014, 193, 5699-5708.	0.8	27

#	Article	IF	Citations
55	Deciphering the Fine Details of C1 Assembly and Activation Mechanisms: ââ,¬Å"Mission Impossibleââ,¬Â?. Frontiers in Immunology, 2014, 5, 565.	4.8	57
56	Human ficolinâ€2 recognition versatility extended: An update on the binding of ficolinâ€2 to sulfated/phosphated carbohydrates. FEBS Letters, 2014, 588, 4694-4700.	2.8	7
57	Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin. Molecular Immunology, 2014, 60, 80-85.	2.2	45
58	Classical Complement Pathway Components C1r and C1s: Purification from Human Serum and in Recombinant Form and Functional Characterization. Methods in Molecular Biology, 2014, 1100, 43-60.	0.9	17
59	Heteromeric Complexes of Native Collectin Kidney 1 and Collectin Liver 1 Are Found in the Circulation with MASPs and Activate the Complement System. Journal of Immunology, 2013, 191, 6117-6127.	0.8	113
60	Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids. Molecular Immunology, 2013, 56, 757-767.	2.2	56
61	<scp>M</scp> re <scp>B</scp> and <scp>M</scp> ur <scp>G</scp> as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environmental Microbiology, 2013, 15, 3218-3228.	3.8	54
62	Deciphering Complement Receptor Type 1 Interactions with Recognition Proteins of the Lectin Complement Pathway. Journal of Immunology, 2013, 190, 3721-3731.	0.8	49
63	A novel peptide inhibitor of classical and lectin complement activation including ABO incompatibility. Molecular Immunology, 2013, 53, 132-139.	2.2	24
64	Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein. Viruses, 2013, 5, 928-953.	3.3	11
65	Procollagen C-proteinase enhancer grasps the stalk of the C-propeptide trimer to boost collagen precursor maturation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6394-6399.	7.1	66
66	Oxidative Stress Sensitizes Retinal Pigmented Epithelial (RPE) Cells to Complement-mediated Injury in a Natural Antibody-, Lectin Pathway-, and Phospholipid Epitope-dependent Manner. Journal of Biological Chemistry, 2013, 288, 12753-12765.	3.4	55
67	Expression of recombinant human complement $C1q$ allows identification of the $C1r/C1s$ -binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8650-8655.	7.1	55
68	Complement Component C1s., 2013,, 2853-2857.		0
69	The Serine Protease Domain of MASP-3: Enzymatic Properties and Crystal Structure in Complex with Ecotin. PLoS ONE, 2013, 8, e67962.	2.5	22
70	Complement Component C1r., 2013, , 2849-2852.		0
71	The Role of Nanometer-Scaled Ligand Patterns in Polyvalent Binding by Large Mannan-Binding Lectin Oligomers. Journal of Immunology, 2012, 188, 1292-1306.	0.8	39
72	Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein. Journal of Biological Chemistry, 2012, 287, 42620-42633.	3.4	51

#	Article	IF	CITATIONS
73	M-ficolin and leukosialin (CD43): new partners in neutrophil adhesion. Journal of Leukocyte Biology, 2012, 91, 469-474.	3.3	20
74	Enzymatic properties of the MASP-3 serine protease domain and crystal structure of its complex with ecotin. Immunobiology, 2012, 217, 1167.	1.9	0
75	Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 2012, 110, 927-937.	4.5	167
76	Calcium-Dependent Complex Formation Between PBP2 and Lytic Transglycosylase SltB1 of <i>Pseudomonas aeruginosa </i> Microbial Drug Resistance, 2012, 18, 298-305.	2.0	24
77	MASP interactions with plasma-derived MBL. Molecular Immunology, 2012, 52, 79-87.	2.2	4
78	Editorial: The double life of M-ficolin: what functions when circulating in serum and tethered to leukocyte surfaces?. Journal of Leukocyte Biology, 2011, 90, 410-412.	3.3	5
79	M-Ficolin Interacts with the Long Pentraxin PTX3: A Novel Case of Cross-Talk between Soluble Pattern-Recognition Molecules. Journal of Immunology, 2011, 186, 5815-5822.	0.8	72
80	Structure and properties of the Ca2+-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions. Biochemical Journal, 2011, 439, 185-193.	3.7	55
81	The Human C1q Globular Domain: Structure and Recognition of Non-Immune Self Ligands. Frontiers in Immunology, 2011, 2, 92.	4.8	72
82	M-ficolin interacts with the long-chain pentraxin PTX3. A novel case of crosstalk between pattern recognition proteins?. Molecular Immunology, 2010, 47, 2232-2233.	2.2	0
83	Direct interaction between CD91 and C1q. FEBS Journal, 2010, 277, 3526-3537.	4.7	45
84	CD91 interacts with mannanâ€binding lectin (MBL) through the MBLâ€associated serine proteaseâ€binding site. FEBS Journal, 2010, 277, 4956-4964.	4.7	29
85	Functional Characterization of the Recombinant Human C1 Inhibitor Serpin Domain: Insights into Heparin Binding. Journal of Immunology, 2010, 184, 4982-4989.	0.8	34
86	Complement Protein C1q Forms a Complex with Cytotoxic Prion Protein Oligomers. Journal of Biological Chemistry, 2010, 285, 19267-19276.	3.4	29
87	Carbohydrate Recognition Properties of Human Ficolins. Journal of Biological Chemistry, 2010, 285, 6612-6622.	3.4	106
88	Structural Insights into the Recognition Properties of Human Ficolins. Journal of Innate Immunity, 2010, 2, 17-23.	3.8	46
89	Human astrovirus coat protein binds C1q and MBL and inhibits the classical and lectin pathways of complement activation. Molecular Immunology, 2010, 47, 792-798.	2.2	55
90	Cutting Edge: C1q Binds Deoxyribose and Heparan Sulfate through Neighboring Sites of Its Recognition Domain. Journal of Immunology, 2010, 185, 808-812.	0.8	52

#	Article	IF	CITATIONS
91	Residue Lys57 in the Collagen-Like Region of Human L-Ficolin and Its Counterpart Lys47 in H-Ficolin Play a Key Role in the Interaction with the Mannan-Binding Lectin-Associated Serine Proteases and the Collectin Receptor Calreticulin. Journal of Immunology, 2009, 182, 456-465.	0.8	77
92	Synergy between Ficolin-2 and Pentraxin 3 Boosts Innate Immune Recognition and Complement Deposition. Journal of Biological Chemistry, 2009, 284, 28263-28275.	3.4	184
93	Structural Bases for the Affinity-Driven Selection of a Public TCR against a Dominant Human Cytomegalovirus Epitope. Journal of Immunology, 2009, 183, 430-437.	0.8	93
94	Identification of the C1q-binding Sites of Human C1r and C1s. Journal of Biological Chemistry, 2009, 284, 19340-19348.	3.4	84
95	Structural investigations of the proteolytic complexes triggering the complement system. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s131-s131.	0.3	0
96	Structural bases for the selection of a public TCR against the HCMV NLV epitope. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s142-s143.	0.3	0
97	The chaperone and potential mannanâ€binding lectin (MBL) coâ€receptor calreticulin interacts with MBL through the binding site for MBLâ€associated serine proteases. FEBS Journal, 2008, 275, 515-526.	4.7	35
98	The lectinâ€like activity of human C1q and its implication in DNA and apoptotic cell recognition. FEBS Letters, 2008, 582, 3111-3116.	2.8	43
99	Elucidation of the substrate specificity of the MASP-2 protease of the lectin complement pathway and identification of the enzyme as a major physiological target of the serpin, C1-inhibitor. Molecular Immunology, 2008, 45, 670-677.	2.2	64
100	Identification of the C1q binding sites of C1r and C1s: A refined 3D model of the C1 complex. Molecular Immunology, 2008, 45, 4097.	2.2	3
101	Residue Lys57 in the collagen-like region of human l-ficolin and its counterpart Lys47 in H-ficolin play an essential role in interaction with the MASPs and the collectin co-receptor calreticulin. Molecular Immunology, 2008, 45, 4134.	2.2	2
102	Biochemical and functional characterisation of the interaction between pentraxin 3 and the ficolins. Molecular Immunology, 2008, 45, 4135.	2.2	1
103	Crystal Structure of the CUB1-EGF-CUB2 Domain of Human MASP-1/3 and Identification of Its Interaction Sites with Mannan-binding Lectin and Ficolins. Journal of Biological Chemistry, 2008, 283, 25715-25724.	3.4	75
104	Structural Basis for Innate Immune Sensing by M-ficolin and Its Control by a pH-dependent Conformational Switch. Journal of Biological Chemistry, 2007, 282, 35814-35820.	3.4	59
105	Identification of the Site of Human Mannan-Binding Lectin Involved in the Interaction with Its Partner Serine Proteases: The Essential Role of Lys55. Journal of Immunology, 2007, 178, 5710-5716.	0.8	55
106	Structural insights into the Slit-Robo complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14923-14928.	7.1	159
107	Assembly of C1 and the MBL– and ficolin–MASP complexes: Structural insights. Immunobiology, 2007, 212, 279-288.	1.9	29
108	Molecular organization of human Ficolin-2. Molecular Immunology, 2007, 44, 401-411.	2.2	72

#	Article	IF	CITATIONS
109	Modified low density lipoproteins differentially bind and activate the C1 complex of complement. Molecular Immunology, 2007, 44, 1169-1177.	2.2	57
110	Soluble oligomers of prion activate the classical pathway of complement. Molecular Immunology, 2007, 44, 3916.	2.2	0
111	Innate immune sensing: Ligand recognition by M-ficolin is subject to a pH-dependent conformational switch. Molecular Immunology, 2007, 44, 3928-3929.	2.2	2
112	Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO Journal, 2007, 26, 623-633.	7.8	170
113	Activation of classical pathway of complement cascade by soluble oligomers of prion. Cellular Microbiology, 2007, 9, 2870-2879.	2.1	15
114	Studies on the interactions between C-reactive protein and complement proteins. Immunology, 2007, 121, 40-50.	4.4	104
115	Functional Role of the Linker between the Complement Control Protein Modules of Complement Protease C1s. Journal of Immunology, 2005, 175, 4536-4542.	0.8	17
116	Functional Characterization of Complement Proteases C1s/Mannan-binding Lectin-associated Serine Protease-2 (MASP-2) Chimeras Reveals the Higher C4 Recognition Efficacy of the MASP-2 Complement Control Protein Modules. Journal of Biological Chemistry, 2005, 280, 41811-41818.	3.4	36
117	The Two Major Oligomeric Forms of Human Mannan-Binding Lectin: Chemical Characterization, Carbohydrate-Binding Properties, and Interaction with MBL-Associated Serine Proteases. Journal of Immunology, 2005, 174, 2870-2877.	0.8	128
118	Mass Spectrometry Analysis of the Oligomeric C1q Protein Reveals the B Chain as the Target of Trypsin Cleavage and Interaction with Fucoidanâ€. Biochemistry, 2005, 44, 2602-2609.	2.5	29
119	Complement Protein C1q Recognizes a Conformationally Modified Form of the Prion Proteinâ€. Biochemistry, 2005, 44, 4349-4356.	2.5	49
120	The Classical Pathway C1 Complex. , 2005, , 63-89.		1
121	The X-ray Structure of Human Mannan-binding Lectin-associated Protein 19 (MAp19) and Its Interaction Site with Mannan-binding Lectin and L-ficolin. Journal of Biological Chemistry, 2004, 279, 29391-29397.	3.4	65
122	Characterization of Recombinant Mannan-Binding Lectin-Associated Serine Protease (MASP)-3 Suggests an Activation Mechanism Different from That of MASP-1 and MASP-2. Journal of Immunology, 2004, 172, 4342-4350.	0.8	79
123	Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends in Immunology, 2004, 25, 368-373.	6.8	223
124	Levels of mannan-binding lectin-associated serine protease-2 in healthy individuals. Journal of Immunological Methods, 2003, 282, 159-167.	1.4	141
125	Studies on the mechanisms of allergen-induced activation of the classical and lectin pathways of complement. Molecular Immunology, 2003, 39, 839-846.	2.2	13
126	X-ray Structure of the Ca2+-binding Interaction Domain of C1s. Journal of Biological Chemistry, 2003, 278, 32157-32164.	3.4	82

#	Article	IF	CITATIONS
127	A Recombinant Chimeric Epidermal Growth Factor-like Module with High Binding Affinity for Integrins. Journal of Biological Chemistry, 2003, 278, 19834-19843.	3.4	6
128	Characterization of the Interaction Between L-Ficolin/P35 and Mannan-Binding Lectin-Associated Serine Proteases-1 and -2. Journal of Immunology, 2002, 169, 5735-5743.	0.8	72
129	The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex. EMBO Journal, 2002, 21, 231-239.	7.8	101
130	Structure, Function and Molecular Genetics of Human and Murine C1r. Immunobiology, 2002, 205, 365-382.	1.9	13
131	Interaction of C1q and Mannan-Binding Lectin with Viruses. Immunobiology, 2002, 205, 563-574.	1.9	100
132	Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity. Molecular Immunology, 2002, 39, 383-394.	2.2	78
133	Monomeric Structures of the Zymogen and Active Catalytic Domain of Complement Protease C1r. Structure, 2002, 10, 1509-1519.	3.3	59
134	Structural biology of C1: dissection of a complex molecular machinery. Immunological Reviews, 2001, 180, 136-145.	6.0	69
135	Substrate Specificities of Recombinant Mannan-binding Lectin-associated Serine Proteases-1 and -2. Journal of Biological Chemistry, 2001, 276, 40880-40887.	3.4	154
136	Assembly and Enzymatic Properties of the Catalytic Domain of Human Complement Protease C1r. Journal of Biological Chemistry, 2001, 276, 36233-36240.	3.4	40
137	The Role of the Individual Domains in the Structure and Function of the Catalytic Region of a Modular Serine Protease, C1r. Journal of Immunology, 2001, 167, 5202-5208.	0.8	43
138	Interaction Properties of Human Mannan-Binding Lectin (MBL)-Associated Serine Proteases-1 and -2, MBL-Associated Protein 19, and MBL. Journal of Immunology, 2001, 166, 5068-5077.	0.8	124
139	Mannan-binding lectin and C1q bind to distinct structures and exert differential effects on macrophages. European Journal of Immunology, 2000, 30, 1706-1713.	2.9	27
140	C1r., 2000, , 52-55.		0
141	C1s., 2000, , 56-60.		0
142	The N-terminal CUB-Epidermal Growth Factor Module Pair of Human Complement Protease C1r Binds Ca2+ with High Affinity and Mediates Ca2+-dependent Interaction with C1s. Journal of Biological Chemistry, 1999, 274, 9149-9159.	3.4	62
143	Structure and functions of the interaction domains of C1r and C1s: keystones of the architecture of the C1 complex. Immunopharmacology, 1999, 42, 3-13.	2.0	22
144	Association of Terminal Complement Proteins in Solution and Modulation by Suramin,. Biochemistry, 1999, 38, 6807-6816.	2.5	7

#	Article	IF	CITATIONS
145	Structural and Functional Studies on C1r and C1s: New Insights into the Mechanisms Involved in C1 Activity and Assembly. Immunobiology, 1998, 199, 303-316.	1.9	15
146	Baculovirus-mediated Expression of Truncated Modular Fragments from the Catalytic Region of Human Complement Serine Protease C1s. Journal of Biological Chemistry, 1998, 273, 1232-1239.	3.4	73
147	The Atypical Serine Proteases of the Complement System**Received for publication on October 7, 1997. Advances in Immunology, 1998, , 249-307.	2.2	48
148	Two parallel routes of the complement-mediated antibody-dependent enhancement of HIV-1 infection. Aids, 1997, 11, 949-958.	2.2	39
149	Structure and Assembly of the Catalytic Region of Human Complement Protease C1Ì,,r:Â A Three-Dimensional Model Based on Chemical Cross-Linking and Homology Modelingâ€. Biochemistry, 1997, 36, 6270-6282.	2.5	51
150	Identification of a cryptic protein kinase CK2 phosphorylation site in human complement protease C1r, and its use to probe intramolecular interaction. FEBS Letters, 1996, 386, 15-20.	2.8	5
151	HIV-1 rsgp41 depends on calcium for binding of human C1q but not for binding of gp120. Molecular Immunology, 1995, 32, 371-374.	2.2	13
152	Analysis of the N-linked oligosaccharides of human C1s using electrospray ionisation mass spectrometry. FEBS Letters, 1995, 358, 323-328.	2.8	26
153	Chemical characterization and location of ionic interactions involved in the assembly of the C1 complex of human complement. The Protein Journal, 1993, 12, 771-781.	1.1	17
154	[4] Human complement serine proteases and and their proenzymes. Methods in Enzymology, 1993, 223, 61-82.	1.0	37
155	Recombinant human complement subcomponent C1s lacking .betahydroxyasparagine, sialic acid, and one of its two carbohydrate chains still reassembles with C1q and C1r to form a functional C1 complex. Biochemistry, 1992, 31, 4254-4262.	2.5	40
156	Effect of lactoperoxidase-catalyzed iodination on the calcium-dependent interactions of human C.hivin.1s. Location of the iodination sites. Biochemistry, 1991, 30, 7135-7141.	2.5	13
157	Arrangement of the C1 complex of complement. Biochemical Society Transactions, 1990, 18, 1148-1151.	3.4	3
158	Chemical and functional characterization of a fragment of C1s containing the epidermal growth factor homology region. Biochemistry, 1990, 29, 3570-3578.	2.5	51
159	Neutron scattering study of the (γ-B) catalytic domains of complement proteases Cl̄r and Cl̄s. FEBS Letters, 1990, 269, 19-22.	2.8	7
160	A model system for the study of the assembly and regulation of human complement C3 convertase (classical pathway). European Journal of Immunology, 1986, 16, 617-622.	2.9	6
161	Ultrastructure of human C4-binding protein: proposition for a new model. European Journal of Immunology, 1985, 15, 941-945.	2.9	2
162	Comparative study of the fluid-phase proteolytic cleavage of human complement subcomponents C4 and C2 by Cs and Cr2 -Cs2. FEBS Letters, 1984, 165, 111-116.	2.8	4

NICOLE M THIELENS

#	Article	IF	CITATIONS
163	Human complement subcomponent C2: purification and proteolytic cleavage in fluid phase by C1ì,,s, C1ì,,r2-C1ì,,s2AND 1ì, FEBS Letters, 1982, 141, 19-24.	2.8	25
164	A study of a covalent-like interaction between soluble nascent C4b and C4-binding protein. BBA - Proteins and Proteomics, 1982, 704, 197-203.	2.1	6
165	Purification and characterization of C4-binding protein from human serum. FEBS Letters, 1981, 132, 49-54.	2.8	24
166	C4 binding to artificial systems. FEBS Letters, 1981, 133, 151-156.	2.8	2
167	Biophysical Characterization of the Oligomeric States of Recombinant Immunoglobulins Type-M and Their C1q-Binding Kinetics by Biolayer Interferometry. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3